UNCLASSIFIED

e s

b4

rmed Services Techrica® nformation fgency

Reproduced by

DOCUMENT SERVEECE CENTER
KNOTT BUILDING, DA YTON, 2, OHIO

This document is the property of the United State=== Government. It is furnished foi' the du-
ration of the contract and shall be returned when no BE onger required, or upon recall by ASTIA
to the following address: Armed Services T —echnical Information Agency,
Document Service Center, Knott Buildi =g, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGSSS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHEAR THAN N CON’*IECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS

NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSeOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHEZD, OR IN ANY WAY SUPPLIED THE

SAID DRAWINGS, SPECIFICATIONS, OR UI‘HER DATA 1S NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE A8 IN ANY MANNER L.._JACENSING THE HCLDER CR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIC_=HTS OR PERMISS/ON TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MA Y IN ANY WAY BE RELATEL THERETO.

UNCLASSIFIED



AFCRC.TR.55-214
_. -
N\: -

GI:OPHYSICAL RESEARCH PAPERS
No. 41

AND SHAPE OF SPECTRAL

R. G. BREENE JR.
CAPT., USAF

SEPTEMBER 1955

GEOPHYSICS RESEARCH DIRECTORATE
LIR FORCE CAMBRIDGE RESEARCH CENTER
AIR RESEARCH AND DEVELOPMENT COMMAND

LINES



AFCRC-TR-55-214

'Y GEOPHYSICAL RESEARCH PAPERS
No. 41

THE SHIFT AND SHAPE OF SPECTRAL

R. G. BREENE JR.
* CAPT., USAF

SEPTEMBER 1955

GEOPHYSICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH CENTER
. CAMBRIDGE MASSACHUSETTS

LINES



il

INTRODUCTION

The importance of spectral lines to the physical sciences need hardly be stressed, and anyone having
had any reason for dealing either theoretically or experimentally with spectral lines will be aware of the
importance of the shift and shape of these lines. In studying an experimental spectrum or constructing a
theoretical one, for example, it is imperative that the experimenter or theoretician have some idea as to the
shape and shift from unperturbed location of the lines which he is studying. On the other hand, the experi-
mentally determined shapes of spectral lines afford a method of determining, by the utilization of the proper
theory, the intermolecular forces which resulted in the observed shape and shift.

Although it is to be hoped that the reader has answered the question himself as a reason for consulting
this work, it appears requisite that the author begin by answering the inquiry as to why he wrote the pages
which follow this one.

If one should be asked what works to consult on the question of the shift and shape of gaseous spectral
lines the proper answer would be, it would appear, ample justification for the present paper, since one, two
or twenty references would hardly be sufficient to cover the field in any real detail. Rather, it would be
necessary to search through a great number of references, if, indeed, one had already expended the effort
necessary to gather together the references for the searching. One would find even the authors of these works
in some cases ignorant of certain of the other works in the field and discover a maze through which one would
have to thread one’s way before arriving at any information, useful in the application which our searcher
originally had in mind. The idea of the present work is to eliminate this maze by grathering together, organiz-
ing, and presenting all the major theoretical work which has been done on the problem of spectral line shift
and shape through the year 1953. It is to be hoped that the presentation has attained a measure of the
completeness and clarity which has been sought. The final verdict as to completeness and clearness must,
of course, be rendered by the reader, the user.

A word as to the general presentation would appear to be in order. Two independent methods of
theory presentation have been utilized throughout, one might say, simultaneously. (1) The theory has
been presented in the chronological order of its development insofar as this is practicable. (2) At the same
time the theory has been separated into the various individual theories which it comprises. Thus, we divide
broadening by other molecules into self-broadening and foreign gas broadening, which latter we further
break down for consideration. This delineation cannot be expected to hold for every theory as, for example,
the inclusion of the Jablonski theory in the chapter on Statistical Broadening would tend to indicate, but
it does provide a needed sub-division and furnish, in addition, a basis for time consuming semantic arguments.

On these bases then the material has been divided among the various chapters.

Chapter 1 begins with the early work of Michelson (1895) on the broadening problem in general and
Rayleigh (1889) on Doppler velocity broadening. This chapter carries broadening theory in general up
through the rather well known but generally misinterpreted work of Lorentz (1906) and concludes with a
paper of Rayleigh (1915). This appears to be a reasonable time to conclude the early work for it is in the
subse(uent years that large amounts of effort were expended on the development of specific theories.

Chapters 2 and 3 are simply sketchy treatments of some of the facets of spectral line positions and
electrodynamics which will be of some use in subsequent chapters.
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Chapter 4 is a study of the Stark theory of Broadening. In this chapter we first consider Holtsmark’s
work on classical Stark Broadening. The objection which could be raised to separating this theoretical
work from other Statistical Broadening (Chapter 5) considerations is certainly a valid one. Holtsmark’s
theory is without doubt a statistical one, and no real objection to the lengthening of Chapter 5 by the amount
required for the inclusion of this theory can be raised. It is concerned, however, with a very specifically
treated phase of the general Statistical Broadening so that, if we keep our semantics straight, there appears
to be no reason for our not treating it separately. Chapter 4 aleo includes Spitzer’s quantum treatment of
the Stark broadening phenomenon.

Chapter 5 concerns itself with the Statistical Theory of broadening and shift. It begins with Jablonski’s
qualitative utilization of the Franck-Condon principle for the construction of a broadening theory. The
remainder of the chapter is principally concerned with the manner in which the giant of the field, Margenau,
initiated, developed, and carried to its present level the quantitative Statistical Theory. As the author has
already mentioned the inclusion of Jablonski’s work in this chapter can be disputed on quite valid ground.
Suffice it to say that it has been included in the Statistical chapter by virtue of its intimate association —
through the approximations which enter it — with the Franck-Condon principle, one of the bases for the
Statistical Theory.

Chapter 6 encompasses the development of the Interruption Theory, otherwise known as “Impact”
broadening, ‘“Velocity” broadening, or what have you. This theory is the continuation of the early utiliza-
tion by Michelson of the Fourier transform in broadening theory and by Lorentz of the damping of the
absorbing electronic vibrations of a molecule by collision. In either of these two approaches the interruption
of the molecular emission (absorption) by collision forms the basis for the theory. The chapter begins with
Lenz’s “appeal to correspondences™ and carries the work of the various authors up to the present.

Chapter 7 is devoted to a study of self- or Resonance Broadening. The first subject for consideration
here is Holtsmark’s study of coupled oscillators as a basis for the occurrence of the Resonance Broadening
phenomenon. The theory is then developed chronologically as it was developed by the various workers in
this field. As we have anticipated, the delineation question again raises its head Lere, although not to such
a height as to be cause for much alarm. This chapter does not contain all that is presented on Resonance
Broadening for this phenomenon represents a special case of the general Jablonski theory (Chapter 5), the
refined Statistical Theory (Chapter 5), and the general Foley theory (Chapter 6) to mention a few. Sufficient
research does seem to have been devoted specifically to the resonance broadening phenomenon to justify
its inclusion in a separate chapter, however:

Chapter 8 represents an attempt to present the various work which has been aimed toward the specific
problem of the broadening of polyatomic molecular spectral lines.

Although the disparity in number of pages and number of authors presented might tend to indicate that
Chapter 9 was added as an afterthought, this is truly not the case. The broadening of the high series mem-
bers presents such a unique pair of phenomena that it would tend to make its attempted inclusion in any
of the other chapters rather farcical. On this basis then this phenomenon has been treated in a separate
chapter.

The author wishes to express his appreciation to Professors E. Lindholm, H. Margenau, and L. Spitzer,
Jr., for clarifying points in certain of their very valuable contributions to the field. Mr. James Gough of the
American Meteorological Society has contributed immensely to the present work by providing translations
of the preponderant majority of German articles consulted. This “‘preponderant majority™ consists of more
articles than somewhat, and the author’s thanks are in the same measure.
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THE SHIFT AND SHAPE OF SPECTRAL LINES

CHAPTER 1
EARLY LINE BROADENING THEORY

The year 1895 may well be chosen as the starting point for our study of the development of spectral
intensity although some work had, of course, been done previous to this time. In November of that year
Michelson published an article in the Astrophysical Journal in which he made the first attempt to bring
together and consider all those factors which *“ . .. account for the finite width of the speciral lines of a
substance emitting approximately homogeneous radiation. . .""'?

L1. THE CAUSES OF LINE BROADENING (1895)

Michelson began his consideration of line broadening effects by a summarization of the hypotheses
which had been advanced previous to that time to account for these phenomena, and a verbatim restatement
may be of interest here.

“1. As a consequence of Kirchoff’s law ‘the ratio of brightness of two immediately contiguous portions
of a discontinuous bright-line spectrum constantly decreases, if the number of luminous strata is multiplied
or if the coefficient of absorption of the single stratum is increased, until the value is reached which, for the
same wavelength and the same temperature, corresponds to the ratio in the continuous spectrum of a body
completely opaque for a given thickness.™'2

“2. The direct modification of the period of the vibrating atoms in consequence of presence (sic) of
neighboring molecules.

“3. The exponential diminution in amplitude of the vibrations due to communication of energy to the
surrounding medium or to o:her causes.

“4. The change in wavelength due to the Doppler effect of the component of the velocity of the vibrat-
ing atom in the line of sight.”

To these causes of line broadening Michelson added the following:

“5. The limitation of the number of regular vibrations by more or less abrupt changes of phase ampli-
tude or plane of vibration caused by collisions.

“6. The possible variations in the properties of the atoms within such narrow limits as to escape detec-
tion by other than spectroscopic observations.”

Of these six possible contributing factors, Michelson considered only the fourth and fifth as of any real
importance in line broadening, although he looked on the other factors as of minor import rather than non-
existent.

As will be apparent at a later stage in the development, we can still agree with Michelson today that
the fourth and fifth factors are of great import in the broadening of spectral lines.

Thus, Michelson concluded that the Doppler effect — which will be shown to be dependent on the
temperature — and the effect of collisions — which will prove primarily dependent on the pressure* — are
chiefly responsible for the finite width of spectrum lines.

* This is not strictly true, since the effects of collisions will be connected with the density of particles. Thus, for example,
from the perfect gas law (pv = NAT) the effects of collisions are also somewhat dependent on temperature.
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Before considering the first development of the effect of pressure on the broadening of a spectral line
as given by Michelson, it will perhaps be well to go back to the year 1889 and the first comprehensive con-
sideration of the effect of temperature on the bfoadening of a spectral line. In that year Lord Rayleigh
published an article ¢ which dealt with the effect of molecular motion — the velocity being dependent on
the gas temperature — on the radiation emitted by the moving molecule.

1.2. TEBE DOPPLER EFFECT IN LINE BROADENING

Let us preface the detailed consideration of this first step in the development of the theory of line broad-
ening and line shape by a qualitative and premature — insofar as the evolution of the theory is concerned —
consideration of thie spectral line which we have so far glibly taken for granted.

We are not interested at this particular time in the mechanics of the occurrence of this line, but only
roughly in what it is. A collection of molecules* in the gaseous state will absorb or emit approximately
homogeneous electromagnetic radiation of a number of frequencies depending on the nature of the molecule.
Consider one of these frequencies. One might intuitively expect this radiation to be truly homogeneous,
that is, of one unique frequency, but, as Michelson noted, this is not the case.

First, let us define the word intensity of emission (absorption) as the energy emitted (absorbed) per
unit area per unit time. Then if one makes a plot of frequency vs. intensity for this ‘‘almost homogeneous™
radiation, one obtains a distribution of intensities over a small frequency range giving rise to a spectral line
of definite shape.

We are desirous of eventually obtaining this intensity distribution, but Lord Rayleigh, in considering
this problem, was primarily interested in an expression for the brightness in the fringes which are produced
by an interferometer. Thus, the expression at which we shall arrive will differ slightly from that of Lord
Rayleigh.

First, let us consider the effect which the motion of a molecule will have on the radiation emitted by it.

In Fig. 1.1 a molecule whose velocity vector, v, makes an angle ¢ with the line of sight of an observer at
0 has been depicted. The molecule is emitting radiation of frequency » and it is with the effect of the molecu.-
lar motion on this frequency, that the Doppler effect is concerned. Since the velocity of the emitted radiation

. c ‘ - . .
is c and the wavelength )\, 3 waves would reach the observer each second were the molecule at rest, but since it

possesses the velocity component ¢ in the line of sight an additional £ waves will reach the observer each
* A

second. Thus, the frequency of the radiation at 0 has been perturbed by the molecular velocity from a

value < to:
A

)‘,__c__ c _ 1
or: = v’_)‘ c+£)_)‘(l+5/c>

R O R I

* A molecule may be monatomic and the possessor of one atom or polyatomic and the possessor of many.



in which the binomial expansion and the reasonable assumption { < ¢ have been utilized. In these expres.
sions ' and A’ have been used for the perturbed frequency and wavelength respectively. Thus, a moving
emitter would have its radiation effected in a manner as given by Eq. (1.1).

Ebert* had investigated this effect on the emitted radiation under the assumption that all the molecules
of the gas moved with the same velocity and had found the predicted line widths much greater than experi-
ment showed them to be. This discrepancy which, if explained, would have dealt * ... the dynamical
theory of gases ... a heavy blow, from which it could only with difficulty recover”*¢ was corrected by
Rayleigh who substituted Maxwell’s velocity distribution for Ebert’s constant velocity.

The distribution of the velocities in the line of sight is given by the Maxwellian distribution as ¢ %¢,
Utilizing this distribution in conjunction with the Doppler effect, Rayleigh arrived at the following expression
for the intensity in the fringes of an interferometer:

Iy = 4eim 2(1 + i) Idy 1.2)
A c
I gives the distribution of intensity in the incident radiation (the true spectral line) while the multi-

plicative factor alters this to give the intensity distribution, I’, in the interferometer fringe. It is with I
that we are concerned, and this is given by the Maxwellian distribution where

m
- — 13
2kT 13
In Eq. (1.3) m is the molecular mass, k is the Boltzmann constant, and T is the temperature in degrees
Kelvin.
Now rewrite Eq. (1.1) as:

s=%0—w

or: g = g(x' — N = Mg (-:T— -:—)’ = N (1.4)

’

In Eq. (1.4) M may now be considered as the wavelength corresponding to the maximum intensity of the
line (line center), and Ay as the frequency increment between the line center and the frequency whose dis-
placement corresponds to the line of sight velocity £.

Thus, if one arbitrarily equates the line center intensity to one, the Doppler effect alone produces a
distribution of intensities over the spectral line which may be represented by the expression:

”AI(A,)

I=e¢ (1.5)

Eq. (1.5) illustrates the dependence as determined by Rayleigh of the intensity on the emitter mass,
line frequency, frequency separation from line center, and, perhaps most important, temperature.

This equation then is Lord Rayleigh’s solution to Michelson’s Point 4. Michelson himself provided
the mathematics of the fifth contributing factor, which we shall designate Interruption Broadening.



1.3. AN APPLICATION OF THE FOURIER ANALYSIS TO LINE BROADENING
“A group of perfectly homogeneous trains of waves . . . incident on a prism”'*’ may be represented

by the Fourier integral:*
@ +

1
plx) = ;-./.du‘/go(y) cos u (x~y) dy
o -

0
Since: cos ux cos uv + sin ux sin uv = cos u (x — v) this may be rewritten in the form which was
utilized by Michelson:

¢ (x) =%/du (C cos ux + S sin ux) (1.6a°
0
+o +w
where: C= /¢ (y) cos uy dy S= / ¢(y) sin uy dy (1.6b)

At this point Michelson made the assumption which was perhaps the most important in his develop-
ment. He assumed that emission terminated abruptly at an intermolecular collision, thus limiting the wave
train to that length which could be emitted between successive collisions. If the mean free path of the

molecule is I and its velocity is v, then the time between molecular collisions will be —. This means that the
v

length of the wave train which is emitted between collisions is:

r= ! c (L.7)
v

The uniform wave train may now be represented by:

¢ (x) = acos mx + bsin mx (1.8)

. 27 N . .
where a and b are arbitrary constants and m = —. \ is the wavelength of the incident radiation. The

limits of the wave train may be taken as — —;— and + é— »and (1.6b) may be evaluated.

+r/2
C=a [ cosmycosuydy = P bm —wr +a sin} (m + wr (1.9a)
m-—u m+u
-2
r/2
S= b/ sinmysinuydy = b sin § (m —wr _ b sing (m + wjr (1.9b)
m—u m+u
~r/2
It should be remembered here that:
r/2 r/2
/cos my sin uy dy = /sin my cos uy dy = 0
-r/2 ~-r/2

The terms on the right side of Egs. (1.9a) and (1.9b) are all small except when m is in the neighborhood
of u in which case the first term on the right side of each equation is much larger than the second. For this

* See Appendix I.



reason the second term on the right of Eqs. (1.9a) and (1.9b) will be neglected. Further, in the neighborhood
ofm = u, C and S as given by (1.9a) and (1.9b) will control the amplitude so that, since the intensity in this
case is simply the square of the amplitude:

I=C+$
- at 4+ b* sintznr (1.10)
4 x'n?
where m—u= 2xn = 27(-; _;_'>
1 1 Av
or =—-5=- L11

where ) is now the line center wavelength. If Eqs. (1.7) and (1.11) are substituted into Eq. (1.10), this
equation may be expressed in a more meaningful form:

()

I=d———— (2.12)
x*(Av)?
@B Lo o
where d = — Egq. (1.12) illustrates the dependence upon pressure through the free path, . Gas
kinetic theory yields the mean free path:
=1 (1.13)
V2 x Not

In Eq. (1.13) o is the gas kinetic molecular diameter, a quantity which must needs arise when impene-
trable spheres are chosen as molecular models. N is the number of molecules per unit of volume, and it is
apparent that this is the factor through which the pressure most directly enters Eq. (1.12).

Fig. 1.2 is the curve which results from Eq. (1.12). The secondary maxima* which occur are of no
import since they do not actually occur in the spectral line. It was with the centrgl maximum that Michelson
was concerned.

It is obvious that the first minimum will occur when, in Eq. (1.10), =nr = x, or when:

J
n= 1. 1v_ -’f—-"— wavelengths (1.14)
r le 1le
This then would give a line width of:
2
s =3 MU (1.15)
lc

Michelson found that Eq. (1.15) gave an order of magnitude agreement with experimental data. Some-
what better agreement was achieved by him when he took the “half-width{ as given by Eq. (1.10) — or»
perhaps more correctly, as obtainable from Eq. (1.10) — and added it to the half-width which may be
obtained from Eq. (1.5). As Michelson noted the problem is nog herewith solved, but it will be of interest

* For disappearance of sine see infra, Chap. 6.

t We now define this quantity — “half-width” — as the frequency separation between the two points on the spectral
line corresponding to intensities of one-half the maximum intensity in the line.



to see if * . .. such able contributions . . . recently . . . justify the prediction that a complete and satis-
factory theory will be forthcoming in the near future.”!*

Let us pause briefly to consider the remaining four contributing causes as advanced by Michelson.*

To begin with Point 3 is Michelson’s manner of stating that a natural line width exists, that is, if a
molecule is completely isolated from all other molecules and possesses zero velocity with respect to an
observer, it will emit a spectral line having a finite width. In the classical case this is due to precisely the
cause stated by Michelson as his Point 3. In the quantum mechanical case the cause may be found in a
phenomenon of the type treated by Furrsow and Wlassow.f We shall not treat natural line shape.**

Point 2 is quite interesting, for it is essentially the basis for the Statistical theory of line broadeningtt
with which we shall deal rather extensively. This point combines with Point 5 in the Interruption theory.***

Point 1 is of no particular interest to us, and Point 6, although it shrewdly predicts isotopic spectra, is
related to a “‘pseudo-broadening” with which we shall not concern ourselves.

It seems particularly interesting to note the correctness of the factors which Michelson listed as causing
line broadening, correctness at least from the contemporary viewpoint.

The next logical step in the development would immediately appear to be the synthesis of the Doppler
and Interruption broadening to arrive at some unified theory of the phenomena. This is precisely what
C. Godfrey®® attempted to do, and it is unfortunate that his results were not of too great value, since his
endeavors were such a logical outgrowth of the work which has already been discussed.

14. THE MEAN FREE PATH AMONG EQUAL SPHERES

Godfrey first carried out a “‘Fourier Analysis of m Complete Sine Waves” to arrive at Eq. (1.10) which
had been given by Michelson. He then proceeded to carry out a *“summation” for all molecules having
definite velocities both athwart and in the line of sight. Before carrying through this procedure, it may be
well to carry through the derivation for the “‘Mean Free Path Among Equal Spheres” which was developed
by Tait.!”?

This author assumes a layer of thickness Ax “. . . in which quiescent spheres of diameter s . . . "!"? are
distributed with a density NV per unit of volume. Now if spheres of diameter s are impinging on this layer
in a normal direction, the fraction:

1 — niws?(Ax) (1.16)
of the incident particles will pass through the layer without collision, since it is apparent that when the
particle center separation is less than a diameter a collision will result. Tait makes the A priori assumption
that * . . . the spheres in the very thin layer are so scattered that no one prevents another from doing its
full dutytt in arresting those which attempt to pass.”!?

Next the particles in the layer are considered as in a state of motion which may be described by velocity
vectors of equal length, v; but of uniformly distributed orientation. Also, let the incident particles have a
common velocity vector, v. Then the number of layer particles whose velocity vectors make an angle
between ¢ and ¢ + d9 with the velocity vectors of the incident particles will be given by:

- n, sin ¢ do (1.17)
* See supra, p. 1. 2

t See infra, Chap. 7.

** For a complete treatment see Heitler 30

t1 See infra, Chap. 5.

*#4¢ See infra, Chaps. 1 and 6.

11t “The Royal Society expects every sphere to do its duty.” J. L. F. King.



since this is merely the polar portion of the volume element and one-half the particles may be expected to

proceed “‘north.”
If the law of cosines is applied to the vector triangle which results from the addition of v; and v, a

quantity which Tait calls the “relative speed” is obtained:

w =V ¢ + 02 — 2u0; cos ¥ (1.18)
From this a quantity, the *‘virtual thickness” of the layer, may be defined:
v Ax
v (1.19)

The substitution of Egs. (1.17) and (1.19) into Eq. (1.16) gives an expression for the number of incident
particles which will penetrate the layer containing other particlcs whose velocity vectors have an orientation
as given by Eq. (1.17):

1 — n;xs? (Ax) v 8in 0;1—: (1.20)

Now to find the overall fraction of particles which pass through the layer without collision, the expres-
sions as given by Eq. (1.20) for all possible orientations of ¢ between 0 and » must be multiplied together.
Each of these expressions is assumed “ . . . infinitely nearly equal to unity. . . .”'?* Under this assumption
the logarithm of the expression is given by:

n(l—x)=—x

Thus, when we take the logarithm of this product, we arrive at the limit of the sum of these factors:

2 Ax .
- Lﬂzs—) / Ve + v2 — 200, cos & sin ¢ d (1.21)
0

The variable of integration may be changed from ¢ to v by utilizing Eq. (1.18) to yield:
nyxs? / .
et | 1.21
2v%y, vo'dey (1.21a)
A straightforward application of Maxwell’s law of velocity distribution, which Tait had made in a
previous section of his paper, yields the number of particles in the layer whose velocity magnitudes lie

between v; and v, + dy; : —
m = 4 Nvtdn, \/ﬁ o (1.22)
x

In Eq. (1.22) N is the particle density, and the other symbols have the meaning previously ascribed
to them.

In Eq. (1.21a) the limits of integration depend on the relative magnitude of v and v,. If v > v, the
limits are v — v, and v 4+ v,. If, on the other hand, v < v, the limits become v; — v and v; + v. Hence:

v+ ntv
o in= g | [want fosan] = (14 Z)+ (24 2)
S dyy = —— | 2d! 2d! ={14 — - — 1.23
2o, widvy 2o, widv + [ vidvo +3v2+301+v (1.23)

Egs. (1.22) and (1.23) may be substituted into Eq. (1.21), and the result integrated over all v, to obtain
the logarithm of the fraction of the number of incident particles of velocity v which penetrate the layer

without collision.
- 41|-Ns’\/ g [ / P (:)12 + ﬂ) dv, + / Pl (v_vl + El—:‘) dv‘] dx (1.24)
r 32 3 v
[} v



It should be noted that the integral in Eq. (1.24) whoee limits are 0 and vlogically contains the results
of integrating Eq. (1.21) in the case v > v, The second integral in Eq. (1.24) contains the results of the
integration of Eq. (1.21) under the condition v < #.

1.5. A FIRST SYNTHESIS OF DOPPLER AND INTERRUPTION EFFECTS

If the bracketed expression in Eq. (1.24) is integrated by parts, the f which was utilized by Godfrey
is obtained:

—gtas) = e E [ Loy (L4 1 "-p..-]
f(ax) 4'N32\/7[4ﬁ’ve + (i3 * 22 / B doy | Ax (1.25)

[}

Recalling that this is a logarithm, the expression for the number of molecules which penetrate a distance
! without collision becomes:
n = ¢’ (1.26)

From this equation it is apparent that the fraction of molecules which have free paths — distances of

unimpeded penetration — between [ and ! +- dl is:
feld (1.27)

These molecules will then emit wave trains of length r to r + dr where r is given by Eq. (1.7) so that
Eq. (1.27) may be rewritten as:

or
'c'{ e cdr (1.28)

It is at this point that Godfrey returns to Eq. (1.10) and proceeds to carry the Michelson solution a step
further. Eq. (1.10) gives the intensity distribution in an Interruption broadened spectral line under the
assumption that all the molecules in the emitting gas traverse free paths of the same length. Godfrey’s
next step was the imposition of the distribution of free paths which is given by Eq. (1.28) under the temporary
restriction of definite thwart and line of sight velocities. If the constants of Eq. (1.10) are ignored, Godfrey’s

result is obtained:
[ J

g—c / e~¥sin’ xnrdr (1.29)

It is with Eq. (1.29) that the objection of Lord Rayleigh!*” deals. Rayleigh felt that this integral favored
unduly long free paths. His solution was the division of the integrand by r.* Godfrey’s development will
be followed, however.

If (1 ~ cos2x Nr) is substituted for sin *xNr in Eq. (1.29) any integral table may be consulted to
obtain:

__
4x’n + v¥f*/c (1.30)
* A consideration of Rayleigh's objection might be tempered by the fact that in voicing it he was attempting to resolve

a disparity between his own and Godfrey’s results. At any rate, the author feels, for reasons which will be apparent, that it is
of no great moment which viewpoint is taken.

1
t Godfrey gives. i———-i_)_‘ but his work preceding and following this expression indicates that Eq. (1.30) is the
nt + ( "

correct one.

I'd



Up to this point the thwart and line of sight velocities have been definite or fixed at various values.
Now Godfrey wishes to add his final refinement to the theory by a consideration of these velocities.

Maxwell’s velocity distribution yields ge”3¢" dq as the proportion of molecules having thwart velocities
between q and g + dg.

Next Eq. (1.30) is integrated for a definite velocity p in the line of sight and all velocities g thwart:

_/ gefag—1

; den + _vjcf’l (1.31)

where ¢* = p* + ¢

The final step is the multiplication by a distribution factor for velocities in the line of sight, p, and an
integration over all p. It should be apparent from previous considerations that this will bring the Doppler
effect into the picture. From Eq. (1.1) it can be seen that if the Doppler perturbation is expressed in wave

numbers, 7, the result is—e-x n in Eq. (1.31) is the Interruption perturbation in wave numbers. Let x be the
c.

total — Doppler plus Interruption — perturbation or the distance from line center to the point on the line
under consideration. Then:

x=n-+ y 2

(2N (1.32)

An expression for n may be obtained from this equation and substituted into Eq. (1.31). Multiplication

by the line of sight velocity distribution factor and integration over all p gives:
4o [

SHMGEEE

(1.33)

-0 [

Eq. (1.33) then gives the distribution of intensity over the spectral line as a function of x, the frequency
separation of a point on the spectral line from the line center.

The variables of integration may now be changed from p and ¢ to p and v where, of course, v* = p* + ¢

Eq. (1.33) may be rewritten as follows: '

j;p ff(m;v)dq =]dpjf(wﬁ v)dg + jdp f“f(pvm)dq
- [] [] ° -~ 0

"f"”ff@"f"’)"‘l"]."l’]f@m")dﬁ fdpqu[f(p,m) + f( — pu )]
o o ° @ A

1 1 1
[ Jpa— -8 - Byt + ’
4 | € dp / qe dg 1 1 .
A - B SR R A e
J(pv) is an even function so that the change from an integration over p from zero to minus infinity
may be replaced by the integration over negative p from zero to infinity as is shown in Eq. (1.34).
During the integration over ¢,p is, of course, constant so that vdo = gdg. This leads to the result which
Godfrey obtained by a slightly different integral juggle. The factor Tt-:"‘ has been dropped.
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This then will lead to the polarization:
P, = Nex; P,=Ney; P,= Nes (1.38)
since each vibrating electron has charge e.
Now consider the forces on one of these vibrating electrons. First there will be a force due to the electric
field of the incident radiation. A related force will arise due to the polarization of the surrounding medium
by virtue of the electronic vibrations. The components of these forces will be:

e(E+ aP); e, +aP); e, + aP,) (1.39)

Since our medium is bomogeneous and isotropic « is a constant.*
Next assume a linear central force to act upon the electron. The components of this force will be:

-~y - fs (1.40)
In Eq. (1.40) f is a constant which is dependent on the nature of the molecule. No real attempt need

be made to attach further physical significance to this constant. If this were the only force acting on the
electron the frequency of vibration would, of course, be related to f and the electron mass as follows:

w = dty? = L (1.41)
m
A dissipative force which is proportional to the velocity is now introduced. The components of this
force are:
de, &y, _ b
b’ TCw' T a (1.42)

The force whose components are given by this equation was intended to account for the absorption

of the incident radiation.
If Eqs. (1.39), (1.40), and (1.42) are substituted into Newton’s equation of motion, F = ma, one obtains

the component equations of motion for the electron:

mx=eE,+aP,) — fx — gx (1.43a)
my = e(E, + a P,) - fy — gy (1.43b)
mi = e(E, + a P,) — fz — gi (1.43¢)
Now let:
L S S 3
=Nt N € " Ne (1.44)

The substitution of Eq. (1.38) into Eqgs. (1.43a) through (1.43c) and the utilisation of Eq. (1.44) in the
resulting expressions yields:

m'P, = E, + aP, - f'/P, — gP, (1.45a)

”"Pu=Eu+“Pv—f’Pv_g'Pv (1.45b)

m'P, =E, +aP, -~ fP, — ¢gP, (1.45¢)
There is surely a sinusoidal time dependence associated with E and P so that the substitution of:

E, = E,, e"’“,' P, = Py, e; etc. (1.46)

into Egs. (1.45) is not an unreasonable one.

* We recall that in the most extreme case of nov-isotropy the polarizability tensor a of nine components replaces thie
constant.
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This then will lead to the polarization:
P, = Nex; P,= Ney; P, = Nex (1.38)
since each vibrating electron has charge e.

Now consider the forces on one of these vibrating electrons. First there will be a force due to the electric
field of the incident radiation. A related force will arise due to the polarization of the surrounding medium
by virtue of the electronic vibrations. The components of these forces will be:

e(E,+ oP;); e(E,+ aP,); e(E, + aP,) (1.39)

Since our medium is homogeneous and isotropic « is a constant.*
Next assume a linear central force to act upon the electron. The components of this force will be:

—f —fy (1.40)
In Eq. (1.40) f is a constant which is dependent on the nature of the molecule. No real attempt need

be made to attach further physical significance to this constant. If this were the only force acting on the
electron the frequency of vibration would, of course, be related to f and the electron mass as follows:

ot = daty? = L (1.41)
m
A dissipative force which is proportional to the velocity is now introduced. The components of this
force are:
e _ Ay _ &
84’ 8’ 82 (1.42)

The force whose components are given by this equation was intended to account for the absorption
of the incident radiation.

If Egs. (1.39), (1.40), and (1.42) are substituted into Newton’s equation of motion, F' = ma, one obtains
the component equations of motion for the electron:

mi = e(E, + a P,) — fx — g& (1.43a)
my = e(E, + « P,) — fy — gy (1.43b)
m: =eE,+ aP,) — fz — gz (1.43¢)

Now let:
rem oS8
Ne’ / Ne' g Net (1.4)

The substitution of Eq. (1.38) into Eqs. (1.43a) through (1.43c) and the utilization of Eq. (1.44) in the
resulting expressions yields:

m'P, = E,+ aP, — P, — gP, (1.45a)

m'P,=E,+ aP,— fP, — gP, (1.45b)

m'P, = E, + a P, — fP, — gP, (1.45¢)
There is surely a sinusoidal time dependence associated with E and P so that the substitution of:

E, = E,, e"“; P, = P,, e ; etc. (1.46)

into Egs. (1.45) is not an unreasonable one.

* We recall that in the most extreme case of non-isotropy the polarizability tensor a of nine components replaces this
constant.
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The collision of the molecule with another will serve to limit this amplitude increase, for Lorentz
supposes that “ . . . by this encounter the regular vibration set up in the molecule will be changed into a
motion of a wholly different kind.”!?

The electron will carry out this new vibration until another collision essentially stops this vibration
and starts still another one, and so on. Thus, ‘. . . in this way, as well as by a resistance proportional to the
velocity, the amplitude of the vibrations will be prevented from passing a certain limit.”1%

In the ahsorbing gas then * ... we shall suppose each molecule to remain in its place, the state of
vibration being disturbed over and over again by a large number of blows, distributed in the system according
to the laws of chance.”1%?

Let A blows be distributed among N molecules per unit of time. The mean length of time between
blows, that is, the mean time that the electronic vibration in the molecule proceeds undisturbed is:

r=N/A
Let f(3) be the probability that a molecule will not be struck during a time interval 3. The chance
that it will be struck in the next interval dJ is @ where 7 has been defined by the last equation. Thus, the

T

chance that the molecule will not be struck for a time 9 4 d9 is:
)
il — —
o) (1 - % ) (1.53)
This should, of course, be the same as f(# 4 d¥) or:

)
5@ + L2 4y

(1.54)
If Eqs. (1.53) and (1.54) are equated, the result is:
9 J)
L 19) = — L1292
aof( ) T (1.55)
Eq. (1.55) has the solution:
f©®) = Be™*"
where B is a constant. This constant may be evaluated as follows:
L] [ 4
/ f(9)ds = B / e *dy =1
0 0
B=1 e B=1/r
So that: 1) = Lemor (1.56)
T

From Eq. (1.56) it is apparent that the number of molecules for which the time since the last collision
is between ¢ and & + d¥ is given by E—e"’/ T dv.
T

Now reconsider Eq. (1.52), the equation of displacement for the vibrating electron. It is now possible
to evaluate C; and C; for each molecule by finding x and % for time ¢t — 9, that is, the time immediately
subsequent to the last blow. In order to do this, suppose that immediately after a collision all orientations
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of the displacement and velocity vectors are equally probable.* This follows from the assumptions which
bave been made earlier with regard to the collisions, that is, the termination of one vibration and the incep-
tion of a different one by the collision. Further, when this condition holds:

x=xz=0 (1.57)
and Eq. (1.57) provides the two needed conditions for the evaluation of C, and Cs:

ae wt=9) 4 geet—9) —tmt~8) _ 0 1.58
m—————-—(wo’ — w') e + Ge + Cse ( l)
aeiw = 4 Ciie™ = — Cimge="¢% = 0 (1.58b)
m(w? — w?)
whose solution is:
Ce — ae (1 © ) fu(t—8) —ing(t—9) 1.59a
! 2m(w? — o) L A (-5
- _ ae (1 _w )e.'..(t-o)+-'-.(t—o) (1.59b)
2m(we? —w?) W

When Egs. (1.592) and (1.59b) are substituted into Eq. (1.52) there results:
x = ge e { 1-143 (1 + —‘f’-) g g (l - _w_) e"“""""”} (1.60)
wo wo

m (w? — o)

We may now find the average value of x over all collision times <x>>, as follows:
L4
<x> =1 / xe='" do (L.61)
T
0

The integrals which occur in Eq. (1.61) are of the form:

}_ ud — &/r ds = 1
f ¢ St i w (1.62)
0
if u is a pure imaginary. If Eq. (1.62) is utilized, the integration in Eq. (1.61) may be carried out quite
easily to obtain:
<x> = d &
,,,(mz +_IT; _ ‘,,z) 4 g ime (1.63)
T

Compare this to Eq. (1.50). It can be seen that collisions have an effect on the electronic motion which

is the same as a resistance to motion of g = 2m and an elastic force of fo=f+ g . This fact may be noted by
T

comparing the terms in the denominators on the right sides of Eqs. (1.50) and (1.63).
We return to a consideration of the radiation which is to be absorbed by this vibrating electron.

* Some forty years later Van Vleck and Weisskopf disagreed with this statement to which they attributed responsibility
for certain discrepancies in the Lorentz results. We shall consider these discrepancics in Chapter 6. These two authors felt
that in the case of thermal equilibrium all x and x orientations should not be equally probable, but rather should be governed
by a Maxwell-Boltsmann distribution.

(2]
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1.8. EFFECT OF COLLISIONS ON THE RADIATION ABSORPTION COEFFICIENT

For simplicity, it can be assumed that propagation takes place in the s-direction. This would mean that
the field vectors would contain a term ¢“¢~® instead of simply ¢**. Lorents further assumes that only the
x-components of E and D are different from zero. Since this is the case, Eq. (1.37a) reduces to:

d ; 19
-2 [H, ¢t = - & fo(t—gs)
2 [ 0-] = 2 2 [p, et

c
1
or: gH, = —D, (1.64a)
c
Eq. (1.37b) becomes:
] ; 1 9 .
Z[E; ™t = — = = [H, ¢
az[ sl ] : c ot [ e ]
or: qE, = 1 H, (1.64b)
¢
Combining Eqs. (1.64a) and (1.64b) gives:
D, = ¢¢°E, (1.65a)
P, = (¢¢ - 1E, (1.65b)
When Eqs. (1.48a) and (1.65b) are compared, it becomes apparent that:
ef—-1=—1
£+ in (1.66)

According to Eq. (1.66) ¢ may be arbitrarily broken down into a real and an imaginary part. Let q
be given by:
~1-ix
1= (1.67)

Now the exponential factor contained in the field vectors becomes:

e(=157) (1.68a)

so that the factor producing attenuation of the beam is:
e v3 (1.68b)
It is apparent from Eq. (1.68b) that ‘:,—’f determines the absorption; specifically it is a linear absorption

coefficient or in Lorentz terminology “‘index of absorption.”
Eq. (1.67) may now be substituted into Eq. (1.66) and the real and imaginary portions on each side
of the resulting equation may be equated to obtain the two equations below.

2 JEEDEr
= 1 .
- e TEraT (1.69a)

[

et [E+rD+e_ ¢

22X - -1 .

o efe Pty (L6

From these two equations «’ and x may be obtained.
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If ¢ = 0, that is, if the frequency of the incident radiation differs only slightly from the natural fre-
quency of the electron, Eq. (1.69b) becomes:

2. S 1 _
7—-—.\/14-"’ 1 (1.69¢)

Over a distance s = \ = 2—"Ein air the amplitude decreases in the ratio 1/exp (— 2‘; 210) according to
W w

Eq. (1.68b). Since this distance is so small, the absorption, and hence the factor 2wy can be expected to be

wl
very small. It follows that E}: will be even smaller. This in turn means that y >> 1 which allows the appli-

cation of the binomial expansion to the radical in Eq. (1.69b). We rewrite this radical slightly before apply-
ing the binomial expansion as follows:

26 +1 ]% 2t+1 (2t + 1
1 : =] - % .70
[ +(£’+n’) He=‘+»’ *(9+n=)' 170!

Higher terms in the binomial expansion are dropped as small. The result of substituting Eq. (1.70)
into Eq. (1.69b) is:

2 &x_ M -4t-1
' 88+ 1.71)
Aslong as £ is small compared with »?, the numerator in Eq. (1.71) can be replaced by n*. On the other
hand, as soon as £ attains the order of magnitude of 7, the denominator becomes so large that the right side
of Eq. (1.71) is small enough to be neglected. Thus, the numerator may be taken as 49* to a good approxima-
tion in all cases. Hence:
(2.9 i

o 28+
This equation yields the linear absorption coefficient:

o' c\ o 2c B+ o 1.72)
This is the line shape which we have been seeking. This may be placed in a more meaningful form.
First, assume the polarization of the gas to be small so that « = 0. Then Eq. (1.47) may be rewritten as:

t= 1%(% - (1.73a)
=8 _ Am
"T Ne” Nee (1.73b)
Eq. (1.72) may then be rewritten as:
k= Nmé »
- 2 1.74
cr (n — »)? +:;4;z"i_vg ( )

By equating the right gide of Eq. (1.74) to one-half k,,, the half-width of the line is found to be:

51 =—p

T (1.75)
where » is the frequency of the line center.
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Also the integrated absorption coefficient may be evaluated as follows:

+o +®
S = [kooan = V12 s / B
- “ (0 = W)t =52

- E! Nme? "
5] cT
So that: Nme* _ §E£
cr 2m2 1.77)

The substitution of Eqs. (1.75) and (1.76) into Eq. (1.74) yields the more familiar form of the equation
for the Lorentz line:

(1.76)

k (1’0) = §_ (61/2)
* (w — v+ (5;/2) (1.78)
Before considering various facets of this equation and its immediate predecessor, it will be well for us
to retrace our steps by a few. The k() which has been attained attenuates, according to Eq. (1.68b), not
the intensity but the field vectors, and, in the final analysis, it is not with the field vectors that we are con-
cerned. Although we will find that an equation identical with Eq. (1.77) results for the absorption coefficient
which is responsible for the intensity attenuation, the difference should be clearly understood.
Poynting’s vector* may be written as:

P=EXH (1.79)

P has the units energy per unit of surface area per unit of time and is indeed associated with the quantity
which we desire, intensity of incident radiation. Thus, since the factor as given by Eq. (1.68b) occurs in
both the electric and magnetic vectors, it will occur to the square in Eq. (1.78). Hence, the intensity of the
incident radiation will be attenuated by the factor:

e = g (1.80)
As a result, Eq. (1.76) may be rewritten as:
+o0 +%
S = / x(w)dv, = 2 / k(v;)dv, = 28 (1.81)

It is apparent then that the equation for k(») will be the same as Eq. (1.78) with S, substituted for S.
Let us now reinterpret k(») in Eq. (1.78) and consider this symbol as denoting the intensity absorption
coefficient.

1.9. AN ALTERNATE MANNER OF OBTAINING THE LORENTZ RESULT

We have obtained Lorentz’s results after the fashion in which Lorentz obtained them, but now let us
go back and obtain them in a slightly different form which we shall consider again at a later point.

Let us again carry out the integration of Eq. (1.61) according to Eq. (1.62) in a straightforward manner
to obtain:

_ eae™ [ 1+ (w/w) 1 @/ } .
x 3({ m(w? — w’)[ 2r [— i(w ~ w) + 1/7] 27 [i(w + wo) + l/r.l] (1.82e)
= R {ae™ (x' - in’ ’)} (1.82b)

* We may recall this vector as the measure of energy flow in the field and as having the direction of this flow.
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In order to write down the desired result from Eq. (1.82b), it is necessary to digress for a moment.

We begin by considering a molecule of electric dipole moment i which makes an angle ¢ with an external
electric field a cos wt. In this case now, we assume that after collision a Maxwell-Boltzmann distribution
governs the dipole orientation (and hence, the orientation of x). If the last collision occurred at time &,
and the energy due to the dipole-field interaction is u . a, we may obtain the mean polarization as:

uf;cos ¥ exp [ua cos ¢ cos (wk)/kT) sin ¢ dy
s exp [ua cos (w) / KT] sin ¢ dy
u’acos(wto)f: cos? ¢ sin ¥ dy 2

= = E2 R{e™) (1.83)
KT [ sin ydy kT < '

<m> =

when we have expanded the exponential in a MacLaurin series and only retained the term containing a.
The polarization per cubic centimeter may be obtained by substituting Eq. (1.83) for x in Eq. (1.61) and
multiplying by N, the number of molecules per cubic centimeter. The result is:

_ Nay? &\ _ o
P'skT3{1+im}‘“3{‘° ib)e} (1.84)

The work done on the molecule by the radiation field will surely be given by the average value of

2
a cos. wt:—f Finally, if we divide this work by the energy flow in the field, g—'- » we should determine the energy
w

taken out of the field by the molecule, or, simply, the absorption coefficient. -

Now
P Nap?® *r cos (wt) — w 8in wt]
wt) — =FE t[
acos (o) g = Beoswt| oF 1+ ot
dP Nay® «’r cos (wt) — w sin wt
where: —_—=
dt  3kT 1+ w? (1.85a)

and the average value is:

dpP Natt  wr
Ecos(wt) — > =
< Ecoslet) T 1+ o' (1.85b)
As a result we obtain:
P 4x Nyt wT
¢ 3kT 1+ o (1.86)
Now we note that the same result could have been obtained if we had set:
dxbw (1.87)

k= ——

[

from Eq. (1.84). This tells us then that, from Eq. (1.82b)

b= hN:u" - 2:? (?‘> [«., - w:><7+ @/ (w+ w:){er <1/f>’]

One is not compelled to arrive at Eq. (1.88) in this manner, but it is slightly more simple than other
possible methods. Let us return to a consideration of Eq. (1.78).

(1.88)
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In Eq. (1.78) the dependence on the physical parameters which, according to this theory, govern the
broadening is lost. Even so, it is perhaps of more value than Eq. (1.74) for several reasons.

Firstly, Lorents himself found and reported in the same article that the mean time which one would
suppose available from kinetic theory showed no very reasonable relation to the mean time called for by
Eq. (1.75) to explain the observed half-widths of the spectral lines which he investigated.*

Next, the constants which occur in Eq. (1.74) leave little latitude for interpretation, but the question
must needs arise as to whether they should be there. N, ¢, and 7 seem reasonable of occurrence under almost
any formalism, but e and m should perhaps not occur in the manner in which they do. If the radiation is
absorbed by virtue of the classical motion of an electron of charge e and mass m in exactly the stipulated
manner or if this classical electronic motion provides a reasonable model for the interpretation of this
phenomenon, then Eq. (1.74) might be of great value. As we shall see, this is not the generally accepted
view however, so that from contemporary viewpoint, the failure of Eq. (1.74) is not overly surprising,

Eq. (1.76) has withstood the ravages of time with a slightly higher degree of success. At first glance,
this would appear rather paradoxical since this equation is nothing more nor less than an evolutionary
descendant of Eq. (1.72) and has its roots in the vibrating electron. On the other hand, it is apparent that
it relates rather different factors than does its predecessor, these factors being half-width, integrated absorp-
tion coefficient, frequency separation from line center, and absorption coefficient. Perhaps another develop-
ment based on a different model would relate these same factors in a similar manner. Further, in order to
utilize it one would have to use an empirically determined S and é.

Few further remarks need be made with reference to this development. A somewhat interesting
comparison may be in order, however.

A comparison of Eqs. (1.12) and (1.77) demonstrates the interesting tendency of 1/(A»)? to pop out of
line shape theories. Although Michelson ignored the mechanics of emission and performed a Fourier trans-
form on the wave train itself, he arrived at the same dependence on A» that Lorentz obtained by a pure
consideration of the mechanics of absorption. Of course, Michelson considered emission, and Lorentz
considered absorption, but the comparison is nonetheless interesting.

1.10. THE END OF THE EARLY PERIOD

We turn for a moment from the consideration of the Interruption Broadening effects of pressure to the
Doppler broadening effects of temperature.

Schonrock!® attacked the Doppler broadening question using the Rayleigh theory because Godfrey®®
had detected an error in the calculations which Michelson '?* had carried out on this type of broadening.
“Wahrend Lord Rayleigh die benutzten Buchstaben genau definiert, ist dies bei Michelson leider niclat der
Fall . . . das er (Michelson) . . . vergisst, einen Faktor 2 anzubringen.”'**f Schonrock attempted to explain
the lack of agreement between theory and experiment which resulted from the introduction of this factor.
His solution to the problem was the assumption that in certain diatomic molecules the atoms were the
“carriers of the emission centers” so that the mass which enters the Doppler formula is halved.

Schonrock!®® later considered the pressure broadening of spectral lines and made an observation which

* Let us note here that r will depend on the molecular diameters. We shall see that, in general, Interruption theorics are
repeatedly required to predict diameters much greater than kinetic theory diameters in order to yield broadening results com-
parable with experiment.

t The author hastens to. point out that, regardless of what factor Michelson had forgotten to bring in, his work would
retain its position of eminence in the field of line broadening,
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is perbaps worthy of note in the light of subsequent events. He began by utilixing Michelson’s pressure
broadening results with a line shape as given by Eq. (1.12). He then showed that a good approximation
to the Michelson intensity curve could be obtained by using an exponential dependence on the square of the
frequency distance from the line center. Fig. 1.3 illustrates this approximation. He thus purported to show
a relationship between Doppler and Interruption Broadening.

This phase of the development of spectral line shape began with a list of broadening factors, and we
shall end it with a similar list, this one contributed by Lord Rayleigh. Before doing so, however, let us
mention another contribution which Rayleigh tucked away in the text of the same article.

*“ ... Is there no distinction between encounters first of two sodium atoms and secondly of an atom
say or nitrogen?”4® Or one might simply ask if self-broadening — the broadening of the spectral line being
caused by the same type of molecule as the emitter — is the same as foreign broadening — the broadening
molecule is not the same type as the emitter. We shall see that this is a very pregnant question.

Rayleigh decided that the causes which underlie the broadening of spectral lines in emission * . . . may
be considered under five heads, and it appears probable that the list is exhaustive:

“(1) The translatory motion of the radiating particles in the line of sight, operating in accordance with
Doppler’s principle.

“(2) A possible effect of the rotation of the particles.

“(3) Disturbance depending on collision with other particles either of the same or another kind.

“(4) Gradual dying down of the luminous vibrations as energy is radiated away.

“(5) Complications arising from the multiplicity of sources in the line of sight. Thus if the light from
a flame be observed through a similar one, the increase of illumination near the edge of the spectrum line
is not so great as towards the edge, in accordance with the principles laid down by Stewart and Kirchhoff,
and the line is effectively widened,”"?
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Fig. (1.1). The physical conditions requisite for the Doppler Effect,
The observer is at 0. The emitter velocity vector makes the angle &
with the line of sight at this observer.
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Fig. (1.2). The intensity distribution resulting
from the simple a;;glicnion of the Fourier transform,
(After Michelson] )

» V

Fig. (1,3). Schonrock’s attempt at the empirical fitting of an
exponential to the Michelson intensity distribution. (After Schon-
rock 156).
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CHAPTER 2
SPECTRAL LINE POSITIONS

The chapter title infers an early deviation from the subject matter of this paper, and indeed such a
temporary departure becomes almost unavoidable. Spectral line positions imply energy levels, and, in turn,
energy levels imply level weight, probability of transition between levels and other factors which can cer-
tainly never be divorced from considerations. of line shift and shape.

Let us consider only the molecular (polyatomic) energy levels which give rise to rotation-vibration

spectra.*

2.1. THE MOLECULAR KINETIC AND POTENTIAL ENERGY EXPRESSIONS

Fig. (2.1) purports to represent a collection of atomic nuclei superposed upon which are an inertial or
space fixed reference frame XYZ and a moving frame xyz. A vector triangle made up of the position vector
of the moving frame origin, p,} the position vector of the i-th particle with respect to the moving reference
frame, r;, and the position vector of the i-th particle with respect to the inertial frame, R;. The relation
among these vectors may be written out as:

Ri=p+r 2.1)

The absolute velocity of the i-th particle follows immediately from this:

Vi=R,=p+v,+oXr (2.2)

when the expression for the time derivative of a quantity with respect to a moving reference frame is recalled.
w is the angular velocity of the system.
Eq. (2.2) may be utilized to obtain the kinetic energy of the system.

2T = Zm; V;-V; = Zmyp* + Zmp,? + Zmy(w X 1) X (0 X 1)
£ S 1 £ 3 1]
+ 22;"!;/.) cve + 2?2m.-b “(w X r)+ 22m.~v.~ *w X r,') (2.3)
] 1 ] 1 3

We may assume that the center-of-mass of the system remains at the origin of the moving frame by the
substitution into Eq. (2.3) of:

2;m‘-l'¢ = 0 (204)

When Eq. (2.4) is substituted into Eq. (2.3); when the terms are internally rearranged, and when the
substitutions,

Zm,-(w Xr) (wXr) = ZﬁE‘ Lgwawg (2.5a)

Zm; =M (2.5b)

T % Weshall only have use for hydrogen-like monatomic models. Since the treatment leading to the required results is very

standard indeed, we shall neglect any monatomic energy considerations.
t Greek letters designating vectors will be written as p. Other characters representing vectors will appear in boldface, as R.
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are made, the result is:
2T = Mp? + Imp? + Eg) I.pwawg + 20 * Zmgx; X v; (2.6)
[ o [

In Eq. (2.6) the first term on the right side is the translational kinetic energy of the system as a whcle;
the second term is kinetic energy of internal vibration; the third term is kinetie energy of overall rotation,
and the last term is kinetic energy of Coriolis interaction between rotational and internal angular momenta.

Let us now consider Eq. (2.5a) briefly. The indices « and 8 run over x, ¥, and 3. If the vector
multiplications indicated by the various dots and crosses on the left side of the equation are carried out,
one finds the moments of rotary inertia to be given by:

Izz = E_mi ()'z’ + ztz) (2‘78)
va = Em\ (*? + 22 (2.7b)
L, = Zm; (2 +57) (2.7¢)
and the products of rotary inertia to be given by:
Izy = Iyz = —E.m‘xiyt' (2‘7d)
Ls = I, = ~Zmx (2.7¢)
I, = I, = —2_7"1;)’.'2. 2.7)
The nine quantities given by Egs. (2.7) go to make up the rotary inertia tensor:*
/ Izz Izy Iz’
Ls = ( L. 1, I, (2.8)
Il’ I:y I‘l

Let us for a moment assume that no particle motion takes place with respect to the center-of-mass
of the system, that is, let us fix the particles at their equilibrium positions. We may then rotate our
coordinate system ir such a manner that the matrix which occurs in Eq. (2.8) is diagonalized. When this
has been done the products of rotary inertia, of course, disappear, and we are left with the equilibrium
principal moments of rotary inertia which we shall designate as Iy,, Iy, and I,,.

The relationship existing among these equilibrium principal moments forms the basis for rotator classi-
fication. Three possible relationships immediately appear:

Iy = Iy = I, (2.9a)
Io: = IOy e Ioc (2.9b)
Io: > IOy # I(n’é IOz (2-9‘3)

Eq. (2.9a) defines a spherical rotator; Eq. (2.9b) defines a symmetrical rotator, and Eq. (2.9¢) defines
an asymmetrical rotator. In cases such as Eq. (2.9b) where a symmetry axis for the mass distribution exists,
this symmetry axis is normally taken as the z-axis.

In the event a linear mass distribution exists, a fourth type of rotator, the linear rotator, appears.
It is obvious from Eq. (2.7c) that I, = 0 in this case.

Having obtained a kinetic energy expression, we now desire a potential energy expression. The follow-
ing expression may be utilized:
2V = Ef’%q.-q; + %%?kijlqiq;'ql + ngik.ﬁmq'qmqn sen (2.10)

* See infra, Chap. 3.
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In Eq. (2.10) the g; are the coordinates which may be in use. To answer the questions as to the neglect
of inverse powers of the coordinates and linear terms in the coordinates, it may be remembered that the
force in related to the potential energy as follows:

' F=-VV (2.11)

If one makes the assumption, with respect to the nuclear system, that the atomic nuclei are always
acted upon by forces whose magnitude increases with increasing displacement of these nuclei from their
equilibrium positions —restoring forces —, thea Eq. (2.11) tells us that no inverse powers of the coordinates
are desired in the potential energy expression. Also Eq. (2.11) indicates that if a term linear in the coordi-
nates occurs, a constant force independent of the nuclear displacement results. This force will surely have
no effect on the internal motions of the system, so it may be neglected.

2.2. THE NORMAL VIBRATIONAL COORDINATES

Having obtained the kinetic and potential energy expressions, we proceed quite naturally to Lagrange’s?
equations and the Lagrangian, “. ... the beauty of the method so suiting the dignity of the results, as
to make of his great work a kind of scientific poem.”%

Specifically, the Lagrangian for our system may be written down as:

L=T-V 2.12)

where Eqs. (2.6) and (2.10) supply the expressions for T and V.

Lagrange’s equations,
doL oL (2.13)

dt 3 g
are here utilized for the solution of the harmonic vibrational problem. The atomic nuclei may vibrate,
in this approximation, in such a manner that each particle carries out an oscillation of the same frequency
but “not necessarily the same amplitude.” Such a motion is called a normal mode of vibration of which a
molecule may possess several, the number being dependent on the number of atoms going to make up
the molecule. The Lagrangian for this problem is:

L =T - Vo = §2my? — ZTkyqq; 2.14)
A ) L 3¥ )

The solution of Lagrange’s equations requires that the vibrational secular determinant be zero.
[ATws — Vol = 0 (2.15)

Let us suppose that there are n atomic nuclei in the molecule. Since each nuclei has three Cartesian
coordinates, there will be 3n equations of the form Eq. (2.13), and hence the determinant in Eq. (2.15)
will be of order 3n. This situation can be somewhat improved.

Since the molecule possesses n particles, it has 3n degrees of freedom. As a whole, the molecule has
three degrees of translational freedom, and, if it is a non-linear mass distribution, it has three degrees of
rotational freedom. Thus, there remain 3n — 6 degrees of vibrational freedom (3n — 5 for a linear mass
distribution). Since we are dealing here with only the vibrational portion of the problem, it would seem
reasonable to assume that we desire the number of coordinates reduced from 35 to 3n — 6. This can be
accomplished by the application of the Eckart conditions:®

2?m;r,-° X v, = 0 (2.16.)
Tmr; = 0 (2.16b)

[}



In these equations the convention,
(xyd) = & + 2/, + ¥/, 8 + 5/) 2.17)

has been applied where (x,%,%,% are the equilibrium coordinates of the i-th particle, and (x/y/'s’) are
the displacements of the i-th particle from equilibrium.

Eq. (2.16a) removes molecular rotation from the problem, and Eq. (2.16b) removes molecular trans-
lation from the problem. Thus, Egs. (2.16) serve the dual purpose of restricting the problem to one of
internal vibration and reducing the number of coordinates to the desired number. Intermediate symmetry
coordinates — coordinates which are more or less associated with the normal modes — may now be utilized
to replace the Cartesian coordinates. These may be intuitively selected, utilizing Eq. (2.16) and the cover-
ing operations ' of group theory, or we may apply the cookbook method of Nielsen and Berryman.'%

At this point, group theory may be used to break up the determinant into steps. A lengthy discussion
of group theory here would simply tend to divert us from the main stream of our development.*

After the performance of these simplifying operations, the determinant is diagonalized. A grand
supposition — namely, that this can be accomplished — is here implied. In carrying out this diagonaliza-
tion the laborer in the vineyard obtains the normal coordinates (describing the normal modes of vibration -
of the molecule) and the roots of the determinant, A;. A word about these roots.

A = of = 4xh? (2.18)

In Eq. (2.18) v, is the frequency of the i-th vibrational mode.

A single root, A; unique, indicates that the molecule is carrying out a non-degenerate vibration. A
double root indicates that the molecule is carrying out a twofold degenerate vibration. In this case, two
perpendicular vibrations of the same frequency may be carried out simultaneously by some or all of the
constitutent nuciei. The resultant particle motion will be elliptical, but in the case of twofold degeneracy
the plane of the motion is fixed. The triple roots results in threefold degenerate vibration. Elliptical
motion also results in this case, but here the plane of motion is determined by the “‘initial conditions.”

It is apparent that an angular momentum which may be called vibrational angular momentum arises
from these degenerate vibrations. We note this for future reference.

The normal coordinates which have been designated g; have now been derived, and it is generally
conceded that they are the best coordinates to use in the continuation of the problem. Accordingly, Eq.
(2.12) is transformed from an expression in terms of the Cartesian to an expression in terms of the normal
coordinates.

2.3. THE COMPLETION OF THE CLASSICAL PROBLEM

It has been found that for most cases the potential energy expression need not be carried any further
than quartic terms. It may be noted that the matrix of the quadratic potential energy expression where

Vo = ligll 1%l gl
is now diagonal. In this equation || ¢ || is a column vector, and ||Vy|| is a diagonal matrix containing the
harmonic force constants as diagonal elements. ||;|‘| is the transpose of || ¢||. Group theory may be
% For a short discussion of this facet of group theory soe Appendix II.
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applied to the cubic and quartic portions of the potential energy expression to eliminate, on the basis of
symmetry considerations, certain of the terms in these expressions.®
The internal angular momenta may be expressed as:

Ps = :?mt(riit - &%) ‘ (2.19a)
Py = §m.'(z.-5w — ;%) (2.19b)
Ps = ‘?mi(xi)"i - ¥i%;) (2.19¢)

We may transform Eqs. (2.19) from expressions in terms of the Cartesian coordinates and their time
derivatives to expressions involving the normal coordinates and their time derivates.
The momentum conjugate to the coordinate g; may be defined as:

aT (2.20)
n= a—,q—‘_

Utilizing Eq. (2.20), Eqs. (2.19) may be further transformed into expressions involving the normal
coordinates and their conjugate momenta. We now have expressions for the components of the internal
angular moments in terms of the normal coordinates and their conjugate momenta. We speak here of the
internal angular momentum as opposed to the total angular momentum which includes the angular
momentum of overall molecular rotation.

After diagonalization of Eq. (2.15) we turn from the Lagrangian to the Hamiltonian ***" formulation
of mechanics in order to utilize the Hamiltonian of this formalism. If we express Eqgs. (2.13) and (2.10)
in terms of the normal coordinates and their conjugate momenta, and if, as is the case, the system is con-
servative, the Hamiltonian may be written as:

H(g,p) = T(q.p) + V(g (2.21)

Wilson and Howard!®® have carried through this transformationt and have obtained the following:
— 1 — 1
H = } 2 xapPuPg — ZVPa + } ZVx puxas =pps + 42 Vx pi7=pi + V(g) (2.22)
oy a iy Yy s Vx

In Eq. (2.22) « and g run over x, y, and z. The quantities x,3 are functions of the normal coordinates
and are also related to the instantaneous moments and products of rotary inertia. x is the determinant of
the matrix |[x.g|l. P. are the components of the total angular momentum, and p, are the components of
the internal angular momentum. The p, are the momenta conjugate to the normal coordinates g;. V is
the potential energy expression, a function of the normal coordinates. Finally, T, is given by:

—/ 1
Ta = %:J {2x.ppp + (Ppxas) + XagVx (Pav’(:)} (2.23)*

The classical theory has carried us about as far as it can, and it now becomes necessary to turn to the
quantum mechanics of Heisenberg,* Born-Jordan,” and Schrodinger,!*” most specifically, the latter.

* With regard to operations of this kind, the author feels that the fact that they may be carried out is of much
greater import at present than the method for so doing. In addition, the reader may consult Refs. (132) through (134)
and (162) through (170) for examples of this and other detailed calculations.

t See Appendix I11.

** For an explanation of the parentheses within the curly braces see Appendix III.
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2.4. THE QUANTUM MECHANICAL PROBLEM

We may write the time independent Schrodinger equation as:

Hwn(Q) = Enwn(q) (2.24)

In Eq. (2.24) H is the Hamiltonian operator which corresponds to the classical Hamiltonian for the problem
in which physically observable quantities have been replaced by operators. ¥.(g) is an eigenfunction of
the operator H and is a function of some set of coordinates g. n here represents the aggregate of all quantum
numbers specifying the state described by the eigenfunction. E, is the energy of the state represented by
¥a(q).

The Hamiltonian operator for the molecular problem is given by Eq. (2.22) in which the angular
momentum components have not as yet been replaced by their differential operator equivalents. To defer
confusion (not necessarily to eliminate it) the fact that Wilson and Howard'* had carried through the
transition from classical to quantum mechanics before obtaining Eq. (2.22) was not mentioned with the
presentation of this equation. This, however, was the case as might have been inferred from the classically
curious method of displaying it.

The substitution of differential operators into Eq. (2.22) aind the substitution of the resulting expres-
sion for H into Eq. (2.24) leads to a differential equation whose difficulty of solution increases at least
exponentially as the number of constituent atoms in the molecule. Concisely stated, the differential equa-
tion is not exactly solvable. This leads us to call upon perturbation theory for assistance.

Perturbation theory essentially amounts to breaking a large, unsolvable problem down into smaller
problems each of which is more amenable to solution, and each successive one of which yields a closer
approximation to the correct solution.

The Hamiltonian, eigenfunctions, and eigenvalues are first broken up as follows:

H=H9 4+ HY + ¢HY+ ., (2.25a)
Vo = 6@ + 0,V + 9, @ + ... (2.25b)
E, = ES9 4 E,Y + ¢E® + ... (2.25¢)

In these equations ¢ is simply a parameter of smallness and may be equated to unity when the calculation
is completed. If Eqs. (2.25) are substituted into Eq. (2.24) and the coefficients of like powers of ¢ are
equated, one obtains the zeroth-, first-, and second-order problems.

H%,% = E O (2.260)
HOyW 4 HVY O = E Oy 1) 4 Oy © (2.26b)
HOp® 4 HOy M 4 gDy O - F Oy @ 4 F Dy D) 4 p @y © (2.26¢)

It has been generally found that in molecular problems the solution through second-order contains
the desired results.

25. THE ZEROTH-ORDER PROBLEM

It is apparent that the selection of the terms from Eq. (2.22) for the zeroth-order Hamiltonian com-
prises the first step in the continuation of the problem. Two criteria for this selection present themselves.
(1) The differential equation which results from the selection should be exactly solvable. (2) The seroth-
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order problem resulting from the selection should describe the phenomena which make the most important
contribution to the molecular energies. Let us write down the zeroth-order Hamiltonian for the general
cm.

i P Py P Y L M
HO = { G+ g g | H D G2+ +d D (ool e+ Ao+ go)
Min~1
+3 z (pa® + pu® + pia* + Ailga® + ga* + ga?)] 2.27)
suwM+1

The term in braces is the Hamiltonian for a rigid rotator, and it may be noted that the equilibrium
principal moments of inertia are utilized therein. The first summation term is the Hamiltonian for a non-
degenerate harmonic oscillator; the second is the Hamiltonian for a twofold degenerate harmonic oecillator,
and the last summation provides us with the Hamiltonian of a threefold degenerate oecillator. It may be
noted that if our molecule has, say, L non-degenerate vibrations, M — L twofold degenerate vibrations,
and 3n — M — 6 threefold degenerate vibrations, then, although the molecule possesses 3n — 6 degrees
of vibrational freedom, it carries out only 3L + $ M 4+ n — 2 distinct vibrations. This fact is indicated
by the method of summation which has been utilized in Eq. (2.27). The terms quadratic in the normal
coordinates have, of course, been taken from the potential energy expression which, we may recall, was
diagonalized as a means of ascertaining these normal coordinates.

It is generally conceded that the discovery of a problem involving angular motion which has been
set up in rectangular coordinates is unfortunate. This situation presents itself, however, with regard to
the first term on the right of Eq. (2.27). The Eulerian angles* are generally the best coordinates to use for
this rotational portion of the problem. The indicated transformations may be made.

Finally, Eq. (2.27) is transformed to a differential operator by the substitutions:

S SN L ‘
P2— 5;; o Ry Pyr ; el (2.28)
where a may be x, y, or z. The transformation to Eulerian angles may be made prior or subsequent
to this transformation'® of Eq. (2.27).

The operator form of Eq. (2.27) is substituted into Eq. (2.26a) to arrive at a rather formidable but
nonetheless solvable differential equation.

One first makes the standard assumption that:

L 1164} N4n-1
v =v0ex) MY(g) T ¥(guga) M ¥(gigeg) (2.29)
fm=] t=L41 s=M<+1

In Eq. (2.29) II is the multiplication symbol. ¥(d,¢,x) i a function of the rotational coordinates; ¥ (g;)
is a function of the i-th non-degenerate vibrational coordinate, and so on.

Eq. (2.29) is substituted into Eq. (2.26a), and the resulting expression is divided by Eq. (2.29). The
‘““constant argument”t is then utilized to break up the equation into components which are subsequently
solved.

* See Appendix IV.

t The *constant argument” is vaguely reminiscent of one of the receipts for "fixing” the "Philosopher’s Mercury™
of the alchemist. *To fix quicksilver. Of several things take 2, 3, and 3,1; 1 to 3 is 4; 3, 2, and 1. Between 4 and 3
there is 1, between 3 and 2 thereis 1. 1,1,1,and 1,2,2,and 1,1 and 1 to 2. Then 1 is 1. I have told you all.™m¢
(Copyright C. A. Watts and Co., Ltd. Reproduction permission obtained.) A thorough search of the literature has failed to
yield any contemporary experimental verification of this theory.
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Let us consider the solution of the vibrational problems first.

Va(@) = Nyerp (- L) B (2.300
Voirs(bined) = Ny, exp (& ilig) exp (- -;1) oL 1o (00 (2.30b)

Voitimi(0is90s03) = Noyyom; 0Xp (imigpi) exp ('— %) oHPLE L 1a (69
. sin™™9 E(-o%:%g (sin® 8) (2.30c)

Eq. (2.30a) is the eigenfunction of the non-degenerate harmonic oscillator; Eq. (2.30b) is the eigenfunc-
tion of the twofold degenerate oscillator; and Eq. (2.30c) is the eigenfunction of the threefold degenerate
oscillator.?®

It is apparent that we have transformed the coordinates in Eqs. (2.30b) and (2.30c). In Eq. (2.30b)
plane polar coordinates have been substituted for normal coordinates, since they are generally more suitable
for the description of the elliptical motions involved. This transformation is given by:

o =1rd
gin = T{COB @5
ga = ri8in o;
In like manner, spherical polar coordinates have been utilized in Eq. (2.30c).
ga = risin 9; cos ¢;
ga = r; sin 9 sin o;
qia = r;cos &;

Several symbols still require clarification. N, is, in all cases, the normalization factor which is obtained
from the general relation:

/ Va¥ndr = 1 (2.31)
alt
space

H,, is the v-th Hermite polynomial.* Ll"(", ) (p;) is an associated Laguerre polyromial. v;, l;, and m;
are quantum numbers, and it may be noted that the number of quantum numbers possessed by an oscillator
corresponds to the number of degrees of freedom — or one might say the classical degeneracy — of the
oscillator. v; is the vibrational quantum number for the i-th vibrational mode, and it may be considered
as a measure of the excitation of this mode. [; specifies the vibrational angular momentum due to degeneracy
of the mode, and m; specifies the projection of this angular momentum vector on the body-fixed 3 or figure

axis. All quantum numbers are restricted to integral values, and the additional relations are imposed
among these three,

L=v,v,—2,...,00r1 (2.32a)
m; = l.', l.' - 1, «vey 1- l,- —l.' (2.32}))
¢ Appendix V lists most of the pertinent polynomials and the equations from which they arise. It should be kept in

mind that it is not here important what the polynomial is, What is important is that the polynomial helps to describe the
behavior of this vibrator.
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These restrictions arise naturally during the solution of the differential equations which yield the
eigenfunctions of Eq. (2.30).
The solution of Eq. (2.26a) for the eigenfunctions yields at the same time the eigenvaluesof the energy:

E; = b, (v,- + %) (2.33a)
E;=hy; (i + 1) (2.33b)
E.' = hv; (v.- + %-) (2-330)

Eqs. (2.33a), (2.33b), and (2.33c) are the eigenvalues of the non-degenerate, twofold degenerate, and
threefold degenerate oscillators, respectively. If we let d; denote the degeneracy of the i-th mode, we may
write the zeroth-order vibrational energy of the molecule as:

= Shy; &%
B = Zhv;\ v + 2) 2.34)

The completion of the zeroth-order problem now rests in the solution of the rotational portion of this.
problem. It is apparent from Egs. (2.9) that one of three possible problems depending on the symmetry
of the nuclear distribution will arise.

The eigenfunctions for the three cases may be written down as:

Vixu(8,¢) = Nyue*M*P}(cos 9) (2.35a)

Viru(Bxwp) = NixuO(8)e=e>Mr (2.35b)
+7

Vaute (Ox0) = E_JCfI%uhxu(d,x,v) (2.35¢)

Egs. (2.35a), (2.35b), and (2.35¢) are the eigenfunctions for the spherical rotator, the symmetrical
rotator,* and the asymmetrical rotator,} respectively.

Three quantum numbers, J, K, and M occur. J specifies the total angular momentum of the rotator.
K specifies the projection of the angular momentum vector on the molecular figure axis. It is perhaps
worthy of note that K does not occur in Eq. (2.35a). This appears reasonable in that all axes of a spherical
rotator are equivalent with respect to symmetry. M specifies the projection of the angular momentum
vector on the space-fixed z-axis. The cognomen, magnetic quantum number, has been applied to M since
this quantum number obviously has no significance except when a unique space-fixed axis is established
by the imposition of a magnetic or electric field on the system.

P¥ (cos ¢) is the associated Legendre function and 6(¢) consists principally of hypergeometric functions.

The eigenfunction of the asymmetrical rotator is obtained as an expansion in terms of the complete
orthogonal set of eigenfunction of the symmetric rotator. The C.(;:m are simply the constants of this

expansion. r is not really a quantum number.
The relations among the various rotational quantum numbers may be written down as:

J=012... (2.36a)
KMgs=JJ—-1,...01—J,~J (2.36b)

* See References 28, 90, 149, 151.
t See References 51, 87, 88, 132, 145, 188, 197.



The eigenvalues for the spherical and symmetric rotators may be expressed as:
1
Fa= 50U +1 2.37)

Ea= U+ + L. L\&E (2.57)
lo Ios
The ecigenvalues of the asymmetric rotator cannot be written down in the concise, closed form of
Eqs. (2.37),* and, in addition, more than one expression for them has been put forward. Let us simply
The total molecular energy in zeroth-order is then:

By = Zhwe (o + ) + By 2.38)

Eq. (2.38) characterizes the molecule as possessing the dual, non-interacting properties of (1) a nou-
rotating particle system carrying out simple harmonic vibrations and (2) a rotating rigid body. Although
this is quite apparently an extremely idealized solution, it admirably satisfies the two requirements for the
seroth-order in that (a) it does provide the exact solution and (b) these effects make the largest contribu-
tion to the molécular rotation-vibration energies.

2.6. THE FIRST AND SECOND ORDER PROBLEMS

Eq. (2.26a) has thus been provided with a solution, and the next and obvious steps are the successive
solutions of Eqs. (2.26b) and (2.26c). Since these solutions amount essentially to the modification of the
simple model of the preceding paragraph, and since the detail involved attains rather voluminous propor-
tions which would add little to this sketchy presentation, we will not follow through the solution of these
higher order approximations. Nielsen'®} has carried out the first- and second-order perturbations in the
general case, and Shaffer et al** have furnished the field with many specific examples of this calculation.

When the first- and second-order solutions have been carried out, a more reasonable description of
the molecule emerges.

(1) The vibrations are no longer harmonic, since the ideal case of the Hooke’s law potential has been
replaced by an anharmonic potential.

(2) The molecule no longer rotates as a rigid body, but undergoes a centrifugal stretching or separation
of its constituent particles which is dependent, us one might expect, through J and K on the degree of
excitation of the rotational motion.

(3) The moments of inertia are no longer constants, but depend through v on the degree of excitation
of the vibrational motion.

(4) Coriolis interactions arise between the internal angular momenta and the total angular momenta.
The internal angular momenta may arise from the degenerate vibrations or from the coupling of different
vibrations.

* For these eigenvalues soe References 51, 87, 88, 132, 145, 188, 197.

t It may be noted that Nielsen's Eq. (4) for the kinetic energy differs alightly from Eq. (2.6). This is due to a slightly
different method of setting up the problem. In Eq. (2.6) let p = 0, that is, let the origins of the inertial and moving frames
coincide. Then the two equations coincide term for term where Q; is the x-component of Zm¢ r¢ X vi, and so on.

#* See References 24, 91, 134, 135, 162 through 170, ____
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Simply as an example of these effects, let us briefly consider Nielsen's expression for the energy through
second order of the symmetric molecule.

E_E Euz b o, |
e ™ he + he ¥* MI«%”‘K (2.39)
where:

E,g = JU + DB, - K¥B, = C) = U+ DD, — JUJ + DK'Dyg — K'Dx (2.400)
B,=B, — a — Z_(v; +g-") @ (2.40b)
€= C=n=3(o+ 3 (2.400)

h h
* = 8, Co = ol (2.40d)

Eq. (2.39) has been expressed in wave numbers instead of the energy units previously utilized (ergs,
ton-miles* -months?, etc.) as the denominator on the left of Eq. (2.39) indicates.

E,/he is a rather complicated expression for the anharmonic vibrational energy. The third term
on the right of Eq. (2.39) is the energy of Coriolis interaction. {; is the Coriolis parameter, and the quantum
numbers are as previously described. It might be of interest to note that when [, the quantum number
which furnishes a measure of the angular momentum associated with a degenerate mode, is zero, the
Coriolis term is likewise zero. The summation is over all vibrational modes where ; is related to the degree
of excitation of the vibration by Eq. (2.32a). {; will be zero for non.degenerate vibrations.

Eq. (2.40a) illustrates the newly introduced dependence of the moment of inertia on ;. The last three
terms on the right of this equation result from the centrifugal stretching whose dependence on the rotational
excitation is illustrated.

This is as far as our rough description of the rotation-vibration energy levels and their associated
eigenfunctions and eigenvalues need be carried, since, save for the inversion doubling effect,® the material
which we have considered is all that will be needed in our line broadening studies.

* See infra, Chap. 8 and Appendix VI.

S R R (k.



>Y

X

Fig. (2.1). Reference system for a collection of nuclei, The XYZ frame is an inertial cne, the
xyz frame a moving one.



CHAPTER 3

ELECTRODYNAMICS

In this chapter we shall devote ourselves to a rather sketchy treatment of those portions of electro-
dynamics which it will be imperative that we utilize during our considerations of line broadening theory.
Since all of line broadening is intimately associated with the behavior of radiation during absorption and
emission processes, the need for these considerations should be apparent.

3.1. LORENTZ INVARIANCE

Let us begin by supposing there to be a group of l-dimensional coordinate systems x°, x°, etc. Now

if we have I™ *" functions 4% " *™ in the x-system, 4%* ***™ in the x-system, and so on, which are inter-
bids...n Y/ bibs.. . by y

related (or which transform) as follows:

401, .. {1} JUNY aia' ai'l. aia" axdl axd”

Ay om = Z Ao o oA o (3.1)
then these I"** functions are the components in their coordinate system of a mixed tensor of contravariant
order m and covariant order n. Finally, the aggregate of these sets of I" ™™ components is the mixed tensor
of the a propos contravariant and covariant order. The obvious modification of this definition for simple
contravariant or covariant tensors follows.

A four dimensional coordinate system consisting of the three space coordinates x, x3 x; and the coordi-
nate x, = ict may surely be defined. Now if x, is one such system and x, another, Lorentz invariance
so-called requires that:

x-St =X B+ R - o 3.2)

This relation will then establish the Lorentz transformation between the two coordinates. As an
example, if in three space one frame is moving in the direction of its x-axis and in such a manner that its
axes remain parallel to those of another frame, then in four space:

_x1+iﬂx4i _ °-=x'i—x‘—iﬂxl 3.3)
xl—Vl—ﬁ".—x”x, 3 ‘—Vl—p .
9
or, simply: X4 2‘:: xp a—?
[ ]
where B8 = v/c

From Eq. (3.1) it is apparent that Eq. (3.3) defines a covariant tensor of order one or a vector. Now
any set of four functions 4, which transforms according to Eq. (3.3), that is,

- ox,
A =345 4)
- rY ] ai. (3 )

is designated a “four vector.”

32
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We might note the inherent invariance of scalars or numbers, since surely they should be unaffected
by a change of reference frame. Infour space time is not a scalar. Thus, the scalar product 24,8, which
may be defined in analogy to the scalar product of two three vectors is invariant. We may also show that
the four volume element dx, dx; dx; dx,, the four divergence,

3 s

(3.52)
0%¢
and the four atled square
12 59 (3.5b)
¢ ot ox?

are Lorentz invariant. Procurement of an invariant time element dT appears to be in order. Taking the
length of an infinitesimal vector product and dividing by (d¢)? yields:

Tdv} _ _ dv)’ﬁ(«ﬁ)’ - - - —a -
(de)® (E EAVY ¢ ¢+ -8
or: dT=cdtV1 -8 (3.6)

namely, an invariant time element dT, the “proper time.” '
We have obtained a few basic relations which will be useful in the first task, that is, the setting up
of the Maxwell equations in invariant form.

3.2. MAXWELL'S EQUATIONS IN LORENTZ INVARIANT FORM

It seems reasonable to begin by supposing charge invariant. Now an element of charge in a volume
element is surely:

de = dexdx:dxs

We know the four dimensional volume element to be invariant, so that if de is invariant, p must corre-
spond to the fourth component of a four vector. We let:

icp = iy 3.7

The x-component of the current density can be related as follows (we still assume relative motion of
the x-axes for simplicity):

= on, = p T = 9
Iy = pVs = p & b . (3.8)

It follows from the occurrence of i; in the equation for i, that i, will transform like the component
of a four vector. Thus, we may take the charge and current density as forming a Lorents invariant four
vector:

il = Pl il = va; i' = pt,
iy = icp . (3.9)

Now let us consider the wave equations for the scalar and vector potentials which arise as follows.
We begin with Maxwell’s equations:

| 1.
VXE=--H (3.10a)
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VX Ha oy 4 1§ (3.10b)
c c
V ' E=4x (8.100)
V -H=0 ' (3.10d)
The absence of any magnetic poles as indicated by Eq. (3.10d) leads to the vector potential solution
for H:
H=V XA (3.11)
which when substituied into Eq. (3.10a) yields:
VX(E+lA)=0«——»E=—L.&—V¢ (3.12)
c c

where ¢ is a scalar potential. When Eq. (3.12) is substituted into Eqs. (3.10b) and (3.10¢) there results:
V- A+ Vi dmp=o0 (3.13a)
¢

ir

1A—v=~A+v(v-A+—l-¢)=—pv (3.13b)
[ [

c
and when we let:

V’A+—1;p=0
c

Eqs. (3.13a) and (3.13b) become:

li_va=%¥, (3.14a)
c c
_:? o — Vie= 4mp (3.14b)

Eq. (3.5b) tells us that the operator -cl; g:; — V? which occurs on the left of each of Eqs. (3.14) is

invariant. A comparison of the right sides of these equations with Eq. (3.9) for the charge-current four
vector serves to show the similarity. The fact that such a combination of the right sides of these equations
has already been obtained leads us to consider the combination of the vector and scalar potentials appearing
on the left. Such a combination is a happy one, and we obtain a four vector transforming in the desired
manner if we take for our components:

4, =4;; Ay =A,; A, =A4,; A =iy (3.15)
Now the Lorentz relation:
V-A+ ¥ =0 (3.16a)
c
may be written as the invariant four divergence:
M _ (3.16b)
5 ax.-

and the potentials are still restricted thereby.
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Surely, from Eq. (3.15)

iEza_iA‘_i?Lp s?.‘.‘_l-—a_ﬂ (3.17.)
c dx Ox, Ox,
H, = (V X A)y = y_! - ?'41 (3.17b)
dx, ax,
Let us investigate the set of derivatives of a four vector,
0A; .
— = fui (3.18)
ax,
According to Eq. (3.4) these derivatives transform as follows:
oA, 9A4; ox; 9x;
ek 2 pidudt Pdod ihidad 3.1
ox; .7 0x; 0X, OX; (3-19a)
so that:
r) , 0% Ox;
= il Bpudut. 3.19b
Jol = 20 2 52 (3.19b)

According to Eq. (3.1) f;// in Eq. (3.19b) transforms tensorially, and as a consequence, the derivatives
of the four vector are the components of a tensor of order two.
Since, for example:

- = ; i OF 0x’ oxt
(AotBo) =5 (4, + By 9% & (3.208)
dx' dx° Ox
then the sum or difference of two tensors of the same type is a tensor of like type. Thus:
aAi‘__aAk_ A 2 B — f
ax, ax, ki f ik f ki f ik (3-20b)

is a skew symmetric tensor component. This tells us that the right sides of Eq. (3.17) are tensor components
so that, by Eq. (3.20b):
H,=fu; H,=fi; H, = fn

iE; = fu; iE, = fa; iE, = fy (3.21)

and we might remark that there are 1"*" = 42 = 16 components as required.
Two of Maxwell’s equations:

V. E=4rp; VxH-1E=%, (3.220)
[ [
may now be written as:
» .
z fu _ 4r i (3.22b)
1 ax, c

where summing over the derivative amounts to contracting the tensor from order two to order one, a vector,
which is requisite for the equality. The remaining two Maxwell equations

v.n=o;vxn+%ﬁ=\o (3.230)
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may be written as: fn + of + Ofn _ 0
ax, ax, 6xa
‘1“4.%‘4. n _ (3.23b)

Oxs Ox3 Oxy
Now after the same fashion in which we proved f},’ a tensor of order two, we may prove Y _ ik
a tensor of order three. Thus Eq. (3.23b) becomes: o,

tirg + i + 4 = 0 (3.23¢)
which sum is also a tensor by Eq. (3.20a). Thus, Maxwell’s equations have been expressed as tensors and
four vectors according to Eqs. (3.22b) and (3.23c). Since these type quantities are Lorentz invariant,
Maxwell’s equations are Lorentz invariant.

3.3. THE RELATIVISTIC HAMILTONIAN OF A PARTICLE
The Lorentz density of force acting on the charge density is given by:

k = p(E +£-v X H) (3.240)

where the first term is due to the electric field, and the second term is the well known magnetic effect. If
Eq. (3.24a) is also Lorentz invariant, things are progressing very nicely indeed. Now for example:

ck, = cpE, + P(vv H, - Hy”l)

= fidd + fuis + fuis

= Ef:‘kik
by Eqgs. (3.9) and (3.21) since f;, = 0. In general, Eq. (3.24a) may be written for i = 1,2,3:

ki = 23 fui (3.24b)
[
where k, does not arise directly out of Eq. (3.24a), but is defined by Eq. (3.24b) as:
=Lo(E.v)
¢

the work done by the field on the charge per unit of volume per unit of time. If we substitute for i; from
Eq. (3.22b) in Eq. (3.24b) there results:

1 u
ki=—2 fo — 3.24¢c
gl S v ( )
or: ki=2 Ty (3.244d)
L] Gx,,
where: Ty = —I—[Efafu +-l-6-;, Z fi ’]
4l 4 il
{ . \
T To Tew -1S,
c
- Ty T, Ty —l:sv

_is, -is, -is, (3.25)
(4

which is defined as the “generalized tension tensor.”

L

{
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We define the diagonal and off-diagonal elements of the Maxwell tension tensor as:
4xT,, = §(E,;? - — E+ H? - H? - H)?
4xT,, = 4xT,, = E E, + H.H, (3.26)
and agree that S = cE X H is the Poynting vector. The last symbol u is the energy per unit of volume
given, as we may recall, by
E* + H?
8r
Now we note that S is the energy passing through unit area per unit time. Thus, we may define

density of field momentum asé S. Finally, we shall refer to the quantity—l- S as momentum. From these
c

considerations the energy and momentum of the field in a certain volume is:

U=§1;/(E’+H2)dt=/udt (3:27a)
G=[gd1=l/5dr=_l./EXde (3.27b)
c 4x
Let us write, for cxample, from Eq (3.24d):
p< O u+ Toy 4 u+1_‘?&=v,.r_}_i’&_ (3.28)
dy at c
Integrating over all space we obtain:
/ har = -~ % +§3 Todo = K, (3.299)

by Eq. (3.23b) and by Gauss’ theorem equating the divergence of a tensor integrated over a volume to
the tensor components normal to the volume-enclosing surface integrated over the surface.

Since K is the force acting on the charge in the volume over which integration has been carried out, it
must be equivalent to the time rate of change of the mechanical momentum of the charges, u = muc, where
we recall our definition of momentum as c times the momentum in the normal sense. Thus

d l1du
K= — = - —
™ =&
and Eq. (3.29a) becomes:
:‘:"(uz + Gs) = C§ Tﬂ' do (329'))

This equation stipulates momentum conservation by requiring that the time rate of change of particle
momentum u plus field momentum G in the volume is equal to the momentum that flows through the
surface, an apparently reasonable assertion.

In like manner Eq. (3.24d) yields:

fk.dfsfpn m--&s.dc—— (3.300)

by Eqgs. (3.25) and (3.27a) and Gauss’ theorem. Or, ainee a—‘— = f k. vdr

d
T+ = —&S.da (3.30b)
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gives the requisite energy conservation. Thus Eq. (3.24d) guarantees the desired energy and momentum
conservation. Now again from Eq. (3.24d):

c / k. drdt = ¢ f K.dt =u, = u, (3.31a)

c/k.drdz = i/p(E~ v)drdt = iT (3.31b)

so that if we consider the group of charged particles or charges in the volume in question as a particle —
or if we simply consider our volume as containing one particle — the momentum u and kinetic energy T
of this particle make up a four vector, u;, Now the following is invariant:

—Zu? =Tt — (u?+ u? + u2) = @ (3.32)

and a consideration of this equation tells us that 4 represents the rest energy of the particle, that is, the
energy for u, = u, = u, = 0.

The four vector made up of u and T transforms according to Eqs. (3.3) and (3.4), and, if we
assume the particle at rest in the x system, the “Einstein formulae” for u and T result:

__ kB
“=Nep (3.33a)
T = H
V1- g (3.33b)
Since, for v K ¢, u, must equal mu,c;
B = me (3.33¢)

In analogy to the non-relativistic case in which we equate the time derivative of the momentum to the
force due to the field acting on the particle,

K=e(E+leH)
¢

we write, according to Eq. (3.33a):

ldu, d mv ( 1 )
K e ez .—__.z = E’ - XH, 3-34
ecd  dt V1 - g ¢ +c v ) (3.34)
and dividing through v1 - B? there results:
du; e
atad. == —z i N
T, TS (3.35)

from Eqs. (3.6), (3.21), and (3.33). We have thus obtained the equation for the relativistic motion of a
particle in an external field.

Now if T is the kinetic energy of our particle, the total energy E may be represented by T + e¢ where
o is the scalar potential of the external field. Hence, from the sum of the two four vectors defined by Eqs.
(3.15) and (3.31) we may form the four vector:

Pi = u + ed;
or: pr=u,+ed;; pr=u,+ed,; ps=u,+ ed,; Py = iE = i(T + ep) (3.36)
We shall designate the space components of u; aud p, as kinetic momentum and total momentum
respectively. Finally, Eqs. (3.32) and (3.36) may be combined to yield:
Zu? = Z(p; — ed)? = ~pu? (3.37a)
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We agree that the straightforward expansion of Eq. (3.37a) is:
(pr —ed)? + (pr —eds)* + (ps — edy) — T = — 2 (3.37b)
and using Eq. (3.37b) for the momentum-energy relation we shall accept as the Hamilionian the following:
H=V+T=co+Vu?+ (p — eA? (3.38a)
By the binomial theorem:
— A 2 — )2
H=e¢+“\/1+(_p__,__e_.)_=e¢+“+l(_p__ﬂ)_ +...
u? 2 M
. — eA)?
zep+ B =AY p eA) (3.38b)

for v < ¢, i.e., for the non-relativistic case and where the constant term g is neglected.

3.4. THE RELATIVISTIC HAMILTONIAN FOR PARTICLES PLUS FIELD

Now the fields which we shall utilize in Eqs. (3.38) must include the field produced by the charge with
which the field is interacting, this latter interaction producing the self-force.

Egs. (3.38) then give the Hamiltonian in which the particle-field interaction is included for a charged
particle in the relativistic or non-relativistic cases.

Now let us obtain a Hamiltonian for our field. To begin with “gauge invariance” tells us that E and H
are not changed when A and ¢ are replaced by A’ = A + V¢ and ¢’ = ¢ — /¢, and we utilize this fact
by choosing £ such that ¢ is zero. Then from Eqs. (3.13a) and (3.13b) we obtain, instead of Egs. (3.14),

the following:

1o . A+amp=0 (3.39a)
c
SA - v+ 9@ - ic'pv (3.39b)
and we shall only concern ourselves with this vector potential. Let us suppose we may express A (xyst) as:
A(xyzst) = Zq; (DAi(xyz) (3.40)
Let us consider the i-th homogeneous form of Eq. (3.39b) for A;:
(3.41)

n+ %A
VAi+ 7 A =0

according to Eq. (3.40).
If we confine the field to a cube of side I and admit the boundary conditions,

A(oyz) = A(lyz), ete.
V- Ai=0
the solution to Eq. (3.37) is surely:

A = e;id¥sing;:(n.x + my + nz) = e,-i\lq'—'-—-;' sin (k;- r)
A= e "™ con )

or finally: A= e \/ %“’exp[i(k.- . ,)] (3.420)
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where r is a position vector and k; is now in the direction of motion of this i-th plane wave. In addition,
the A4; have been normalized to unity in the box such that

fAi'AIdf = 4dxc'ly

Eq. (3.42a) simply serves to illustrate insofar as we are concerned that an expansion in plane waves
at le st has the cursory appearance of a reasonable procedure.

ZqijA; = Zqiwyg (3.42b)
Now we let the subscript i refer to the direction of propagation — i opposite to —i — and j prescribe
the direction of polarization (the direction of E), j = 1 indicating a longitudinal wave and j = 2,3 a trans.
verse wave. Thus:
A = Zgju,;
v
= A1+ A, = Zqu + Zqu, (3.43)

where A has been separated into longitudinal and transverse components.
3
Now, remembering that V*u;; = —lc'; w+ V(V-u) = Vay

—since V X V X = —=V? 4+ V(V + )—Eq. (3.39b) becomes:

1., 1. 4r
—Z(q+ i q)u, + =Zgu; = — pv (3.44a)
c¢ ¢ ¢
or after multiplication by u, or U; and integration over our box:*
. 1/ _
9 + V;’q, = -c— pu; - vdy (3.441))
w“ 1/ -
Q=— f pu; - vdy (3.44c)
¢

by Eq. (3.39b).

Let us note that, since Eq. (3.41b) corresponds to forced oscillation, the transverse wave may be
quantized, but, since Eq. (3.41c) corresponds to a free particle motion under the influence of a force not
dependent on the position coordinate, the longitudinal component may not be so quantised.

It can be shown — we shall not do so, but it is a quite straightforward procedure — that the Hamilton
equations which can be obtained from Eqgs. (3.44b) and (3.44c) arise from the Hamiltonian:

H = ?i(Plic + v*qq) + ?iﬁl}’l + fvl‘k’ + [Pk - %Ak]’ (3.45)

where the third term corresponds to that occurring in Eq. (3.38a). The appearance of this term should
not come as a surprise since Eq. (3.10c) allows the presence of charged particles in the cube under con-
sideration.

We may rewrite the second sum™*® as the Coulomb interaction between the particles. Thus, the
contribution of the longitudinal wave to the Hamiltonian drops out.t Finally, when we add the portion
of the Hamiltonian due to an external field there results:

* The orthonormality of the u; set yields the result.
1t The contribution of these waves to A within the bracket in the third term aleo disappears.
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H = f[ﬂk’ + (P — & Zgui; — aAY) + i?(ﬁtpc + vlqq
+ 12304 Tepe'(k) (3.46)
&® ri k
The four terms in Eq. (3.46) represent (1) the kinetic energy of the particles and the interaction of
these particles with the light waves, (2) the energy of the light waves, (3) clectrostatic interaction between

the particles, and (4) the interaction between the particles and the external field.
From Egq. (3.46):

H, = ¥(pp. + v?q4.) (3.47a)
At this point, it behooves us to rewrite a portion of Eq. (3.43) as:
4= ?(qgu. + Qi) + g + quay) (3.48)

Now, however, g, and g, are not canonical in that they do not satisfy the canonical equations of Ham-
jlton. This requires the introduction of the new canonical variables:

=q+q (3.49a)

Py = —iv(q — q) = Q (3.49b)
Substitution of these equations into Eq. (3.47a) yields:

H, = }(P? + v*Qd) (3.47b)

This is the Hamiltonian of a harmonic radiation oscillator, and it is apparent that its energy cigenvalues
must correspond to those of the well known harmonic oscillator.

E; = (ny + dhv, (3.50)

This equation tells us that each one of the infinite number of radiation oscillators in our volume possesses
a sero point energy of 4k, so that even for each of the oscillators in the ground state the volume is possessed
of an infinite energy. Assuming this difficulty to be a formal one, we write simply for H'%%:

H= f[ﬂk’ + o — aZ(quy; + quy) — aA)] + Znihy,
+4 2 5% 4 3 (3.:51)
ishry &
3.5 REEXPRESSION AND UTILIZATION OF THE COMPLETE HAMILTONIAN
In order to put Eq. (3.51) in an oft-encountered form, we note that:

& oH, c(Psk — ed,)
—_— = U = == ; etc. 3.52
P o Py ey (3.528)

according to Hamilton’s equations, and, if we square and add the v-components given by Eq. (3.52a), we
can obtain:

poed= T (3.52b)

Utilising Eqs. (3.52) we may write H, as:

1
Hb=°’=¢+':'»'(Pt-euA)+#h“1—ﬁ»’ (3.53)
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which, according to Dirac, satisfies the equation:
By — ae)¥e = (o * (P — @A) + vam] i (3.54)
where now g, and v, are matrices satisfying the following commutation relations:
ay + ya; = 0 ayay + a, =0

l=gl=ar=9=1 (3.55a)
Specifically, these matrices are:

g=(2 "’5) v=(g_‘_’,) (3.55b)

with each element representing a two by two matrix, the & being the well known Pauli spin matrices:

1-(5 1) (1)
o = (_?i 5) o -_-(; 31) (3.55¢)

We might pause for a moment to give a portion of Eq. (3.54) specifically. Suppose ¥ = u(s)u(r)
where u(s) is a function only of the spin coordinates and u(r) a function of only the space coordinates. Then:

lasps —exsdy +...] ¥ = aspa¥ + . ..

=_uy(0 oy ()au(r) . )

where the o, are given by Eq. (3.55¢c) and the remainder of the equation takes an analogous form.
According to Eq. (3.53), Eq. (3.51) takes on the form:

H=Z[ay: (Pn—eA)+1m+ew]+}§;m+z"¢‘t (3.56)
iph

and we are now in a position to separate this Hamiltonian into a perturbed and an unperturbed portion
such that:

H=H + H (3.57a)
We select these parts of the Hamiltonian as:
Ho=Zla. (o — aA”) + nm + a0] + iz $% 4 ngh = H, + H; (3.57b)
ipk
= —Zan-A=Hy (3.57c)

where H, is the Hamiltonian of the particle, H; is the Hamiltonian of the field, and H,, is the Hamiltonian
of the interaction between the particle and the field. We might note that the A’ and ¢’ remaining in the
particle Hamiltonian are associated only with the external field.

If we now revert to the non-relativistic approximation of Eq. (3.38b) we obtain:

H = El— (Pa — aA)? (3.58a)
[’
from which:

H,-Z ,

. @ — 2apa * A* + 624, + ") (3.57v)

1
2
— 3\ Caps A - o4 3.57¢)
T 24
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Let us now consider H’ as given by Eq. (3.57¢’) since we shall be primarily concerned with this non-
relativistic case. Where the unperturbed Hamiltonian allows for no change in the number of photons in
the field — note this through the term Zn,jf», — the perturbing portion of the Hamiltonian does just this.

¢

This is of no little importance, for, since this term gives the interaction between radiation and matter, it
follows that no changes in this photon number may occur in the absence of matter.* The first term in Eq.
(3.57¢’) refers to absorptions or emissions of one photon — by matter — in a given process, while the second
term refers to absorptions or emissions of two photons or the simultaneous absorption and emission of two
photons — one each way.

From Eq. (3.48) the first term in Eq. (3.57¢’) becomes:
4xct S
Hiy= —\/ Z— Pr * (g:A + qiA) (3.58)

Now before doing anything more with this equation, let us consider the eigenfunctions of the operator H,
We surely expect these eigenfunctions to describe the system particles plus field. Let us take one particle
for simplicity and suppose the quantum number n to describe the state of this particle, while the quantum
numbers n;, ny, n, . . . describe the state of the denumerably infinite number of radiation oecillators in
the volume. Then:
¥y = wnn,n,n,l s (qqitpqa .. -) = %(q)%.. (ql )Wm (ql) vees

and the matrix elements of H(;,’ are:

(Ho ) = f .. f @@ - HoyYn@ ¥ (@) - - - drdes . . - (3.60)

Due to the behavior of the Hermite polynomials which go to make up the harmonic oscillator eigen-
functions, the matrix elements of ¢; may be found as the familiar ones:

\/-2%_("; +1) form; =n; +1
(Gidnimi = / Q¥n¥mdq, = '
for m; = n; — 1 (3.61a)

0 form; =n; +1
@ne = [[itnibmts, =N Ene tormi = n 1 (3.61b)
vy
In the general manner of wave mechanics p must be replaced by —ihc V. Thus the dot product
(p-A,) is the gradient in the direction of A; according to Eq. (3.39b). Now, we recall that (k; - r) is, in
essence, the projection of r on the wave propagation direction, which direction in turn is perpendicular to
A;. Thus, operating on expi(k; - r) with —i}¢ V, yields zero so that the following is valid:

(=i V) exp [i(k; 1)]¥m(g) = exp [i(k; 'f)](-l’% Vivm(@ +0 (3.62)
Finally, utilizing Eqs. (3.61) and (3.62) we obtain:

(H(l)')an,...a.'...;m ngkl. .

~-\/4“'f m.@){'“‘ & - r)}(-u;é V )¥m(@dr \jz {J,.—— +1 }

* Some of the "thinkers” ruminations on matter models tend to cloud this appesrancewise straightforward statement
bat we shall content ourselves with “leaving it where it is.” ‘Things are precisely what they seem.” Indignatius.
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Eq. (3.63a) then gives us the matrix elements of the first order — in e — interaction between the light

field and the particle for the non-relativistic case. The result is appearancewise the same if we let (Q,)nm
be given by:

(Q)wn =23 f Vs @) exp [i(K * £)] o'Vm(@)dr (3.63)
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CHAPTER 4
STARK BROADENING

We turn now to a consideration of the broadening of spectral lines by the electric fields of the molecules
which surround the emitting molecule.

41. PRELIMINARY CONSIDERATIONS

Before doing so, however, let us touch briefly on the Stark splitting of a spectral line by an external
electric field. In Chapter 2 the magnetic quantum number M, which specifies the spatial orientation of the
angular momentum vector, has arisen. It is qualitatively apparent and quantitatively confirmable that, in
the absence of a field of force, M has no effect on the level energies but, as we have seen, serves only as one
of the level degeneracy parameters. There is, in fact, no reason that spatial orientation should affect level
energy when .10 unique direction in space, which may be used to differentiate between various orientations,
exists.

Let us now impose an electric field E on the gas, thus establishing the requisite unique axis in space.
Suppose, for example, the gas to consist of linear dipole molecules. Classically then, the dipoles will be
under the influence of a force which tends to align them with the electric field, the magnitude of this force
being dependent on the angle between E and the dipole axis. Quantum mechanically, we may consider this
angle as a discontinuous function of M. Hence in the case of a linear dipole rotator, the unique J levels will
be split into several levels for which the energy displacement from that of the original level will be dependent
on the value of M. The spectral lines arising from transitions among levels split in this manner will, of
course, also be split.

Stark?? originally suggested applying this principle to the broadening of a spectral line, and later
Holtsmark*® * carried out the first analytical attack on the problem.*

Holtsmark felt that Fuchtbauer and Hoffmann’s investigation,® for one, of the broadening of the
Cs and Na lines by N at high pressure left something to be desired in the Lorents theory of pressuret
broadening, since this experiment showed a much larger line width than was prophesied by that theory.
Holtsmark also advanced the premise that . . . according to the new conception of light emission as per-
taining to quanta, the plausibility of the Lorentz explanation decreases, because it becomes entirely improb-
able that emission results from oscillating electrons.””*® These would appear to be valid reasons®® for a new
approach to the problem of pressure broadening, and Holtsmark’s approach led to a Stark-effect explanation
of this phenomenon.

We begin, with Holtsmark, by considering an emitting atom which is assigned the label 0. This emitter

*In order to alleviate the anguish which this remark may cause some of the more diligent perusers of the literature, a word
of clarification would appear to be in order. In several portions of the literature one finds Reforences 65 and/or 66 attributed
to Debye. This is simply not correct, but the probable reason for the error may be deduced. Debye wrote a two-page, semi.
quantitative article® on the subject of Stark broadening which immediately preceded Holtsmark's article in the Physicalische
Zeitechrift for 1919, and it would appear that this juxtaposition has considerably confused the reference situstion ever since.

1This is a poor term: which we shall replace by “foreign gas™ or “self” wherever possible.

**The latter perhaps not 100 much so, sinoe we could ™ . . . appeal to correspondences. . . *  (See infra, Chap. 6.)
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is surrounded by a large number N of disturbing molecules (or ions) with assigned labels 1,...,N,in general n,
Each of these surrounding molecules will contribute to an electric field at the location of 0, and this field will
thus be the sum of these /V; components. Were these perturbing atoms at rest, there would be a constant
electric field at 0, and a Stark splitting of the emitted lines would result. The molecular motions change this
situation, however. By virtue of these motions of the broadening molecules various molecular system
configurations will exist from time to time, and these with varying probabilities. To each of these various
configurations will correspond a field strength at the emitter which will occur with the probability of the
molecular configuration. Quite obviously then, various Stark splittings may occur with these varying
probabilities and, in a manner which will be more apparent after a study of the mathematics of the situation,
a line broadening, instead of a simple line splitting, should result.

4.2. T7IE PROBABILITY OF AN ELECTRIC FIELD STRENGTH AT THE EMITTER

Holtsmark®* began with the assumpiion that the probability of a particular field strength E, is a
function of E; and set out to determine this probability.
Let the components of the field strength at 0 due to the n-th perturber be X,,, Y,, Z,. The components
of E, will then be given by:
M N N
X = ?;‘X,. i Yo= 213Y,‘; Z, = ?Z,.‘ 4.1
We desire the probability that
X, lies between X, and X, + dX,
Y, lies between Y, and Y, + dY, (4.2)
Z, lies between Z, and Z, + dZ,

Let the position of the n-th broadener be specified by the m coordinates xy,, X3,, . . . » Tua- Then the
Xy Yo, Z, are functions of these m coordinates. It follows that the X, Yo, Zo of Eq. (4.1) are functions of
the Nym coordinates belonging to the N, surrounding atoms. An Nym dimensional space is next set up, and
to each point in this space there now corresponds a stipulated field strength. These points will be distributed
in space according to some probability law or, what amounts to the same thing, some density function.
The probability that xi,, 21, . . . , Xm, lie in the range dx,,, dxsy . . . dx,, may be expressed as:

0adx1ad%2p ¢ + « AXma (4.3)

where o, is a function of the x,, x1,, . . . xyn. It follows that the probability that all Nym coordinates Lie in
the range dxu dtu cae dx,,wl is:

Ol « oo OpN dxudxm c v dxl,.dxg, “e e dem (4.4)

It should be noted that this coordinate distribution establishes our electric field strength within a
certain small range.

In certain portions of our Nym dimensional space the range requirements for the field components as
given by Eq. (4.2) will be satisfied. On the other hand, it is apparent that these requirements will not be
satisfied in certain portions of space. It follows from these considerations that, with Holtsmark, we must
now obtain the probability of meeting the requirements of Eq. (4.2).

*The editorial or typesetting errors which appear in this article are so numerous that the author foels they should be brought
to the attention of those who may feel inclined to study the original. In almost all cases they can be picked up rather readily

by considering the development which immediately precedes and follows them, but, nonetheless, they do areate a certain awrs
of confusion without forewarning.
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If Eq. (4.4) is integrated over those portions of space satisfying Eq. (4.2) and this result is divided by
the integral of Eq. (4.4) over all space, the field strength probability function is obtained:

W(Xo. Yo, Zo)= ;—,1—-/ “oe / 0103 . . « OpN, dxn c e dx,..N, (4.5&)
N;
wacn

where:

VN: = / “oe fdldg e oo Op,y d‘xu “ s dme, (4°5b)

W (X YeZ,) may be defined by interpreting W (X, Yy,Z;) dX,dY,dZ, as the probability that X,,Y,,Z,
satisfy Eq. (4.2).

We might consider Eq. (4.5a) more specifically since it is a rather important one in this development.
The integrand provides us with the probability that a volume element which satisfies Eq. (4.2) will be occu-
pied by a system point — a point which specifies a certain configuration of the atomic system of perturbers.
V', serves to normalize this probability, the need for which normalization is apparent.

The evaluation of Eq. (4.5a) now becomes of major importance. Holtsmark used what might be con-
sidered a modified form of the method developed by Markoff!! for this evaluation.

The first step is the multiplication of Eq. (4.5a) by the proper Dirichlet factors in order to transform
this integral into an integral over all space. The Dirichlet factors for this transformation are:

+o
HX) =§ ’l‘;_"fe“fde (4.6a)
+o . .
H(Y) = } / Mg«d,’ (4.6b)
r_‘ )
+o .
1D = [BXsy (4.60)
where:
M
a=4dX, ; T"lzxn (®im o oo Zma) — X | (4.70)
nM
B=13dY, ; e= fY. R e (4.7b)
M
v = 4dZ, ; x=122.(x1.---xm)—zo (4.7%)
Certain relations among the factors in Egs. (4.6) may be written as follows:
~—a<T<a (4.82)
—-B<e<p (4.8b)
—r<x<v (4.8¢)

If Eq. (4.8a) is valid, Eq. (4.6a) is equal to one. If Eq. (4.8a) is not valid, Eq. (4.6a) is zero. A con-
sideration of Eq. (4.7a) will show that this is simply another way of stating Eq. (4.2). In like manner the



48

validity of Eqs. (4.8b) and (4.8¢) control the values of Eqs. (4.6b) and (4.6c) aecording to Eqs. (4.7b) and
(4.7¢).
By Eqgs. (4.7) a, 8, and vy are infinitely small so that:

aina£=a_ sin.6n=ﬁ; sin v¢{

’ =7 (4-9)
¢ n $
If Eqs. (4.7) and (4.9) are substituted into Eqs. (4.6) the result is:
1 +‘”. N
HO = Lax, [ otEnmogy (4.10a)
1 3
+o
1 sy -, ‘
H(Y) = 2—dYo / MGt gy (4.10b)
t 4
+o
1., 3 -2) ‘
HZ) = E-«lzo / PRl fe (4.10c)
w

-

Now multiply Eq. (4.5a) by Eqgs. (4.10):

+o
W(Xo, Yo, Zo)dXodYodZo = 813 (lXodYodZo // dfdﬂdf
I o

t(on-HlYa +4Zo) WEEX n+93Y, ,.+{IZ,‘)
f / . .ox,e dxy . . . deny, (4.11)
VNI

The X, Y,, Z, are functions of the x,, . . . x,,, while the X, Y;, Z, are constants in all the integrations:
It should be stipulated now that all the broadening molecules are considered the same, that is, the Stark
broadening is not treated for the case where, for molecules, more than one compound (element) acts as a
broadening agent. In this event, identical ¢lectric field strength components X, Y,, Z, will be the same
functions of xy,, X3, « « + » Xms. Let us briefly consider the rearon for this. Suppose the broadening molecules
may be considered as quadrapoles insofar as the field which they produce is concerned. Then, since the field
produced will be a function of the quadrapole moment and the coordinates of the molecule, and since the
quadrapole moments for like molecules will be the same, the field strength components will differ only for
differing %1, Xy, - - - Zn- It also follows from these considerations that for identical X, Yoy Zp, 01y 03, . -+ 5 O,
will all be equal.

These equalities among the coordinates and their probability functions lead to a very fortunate simplifi-
cation of Eq. (4.11). The inner integral can be broken up into the product of NV, identical mtegrals, each of
which is integrated only over the m coordinates of a single molecule.  The result is:

[f g / XY D pdaydyy . ,,,:l (4.12)

space

In Eq. (4.12) the principle enumerated in the preceding paragraph has been applied to Vy,. Thus
Eq. (4.11) becomes

. W(XE+Yn+20) )
W(Xm Yoo zn) - __/ ./ded"ds\.e—a(f.\'o-FnPo‘kle) i'rl&'—u [/ - /e ’ adx, .o dt‘]v (4.13)
allspace
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It is at this stage of the development that Holtsmark departed trom the Markoff method and proceeded
with an integral evaluation scheme which he attributed to Debye.

43. THE INTRODUCTION OF SPECIFIC FIELD PRODUCERS
Let us form the dot product s * E where:
E=iX+jY+ kZ (4.14a)
s =it + jn + k¢ (4.14b)

It might be mentioned that £, 5, { will be constants for the integration over xi, . . . , Xpm.

Eq. (4.12) may now be transformed into spherical polar coordinates and integrated after an expression
for E has been obtained.

A molecule we here consider as something or other which is made up of a number of charges, ¢,. Let us
establish a moving reference frame at the center of the molecule and determine the potential which would
exist at the point x, y, z due to these charges. If r is the position vector of the point z, y, 3, r, is the positions
vector of the s-th charge, and R, the sum of these two vectors, then the fact that

Ri=(x -zl + (- y)' + (& — 5

=r’[l +(f)' —2————('—")+...] (4.15)
r r
yields the potential:
~Sa_Zu_ (r-Zer) 1 s [ (r"-)’]}
" R . " 2m { Zer, 32| ¢ 5 +...

“Ze_lir _ 1 z( _3_1’) z( _§?_“)
. r’[rEe.r.] 2H{Ee.x, 1 5 +Zeyt| 1 "

322 6Zex,y,xy 6Ze,y,2,y%
) S
oot . n ”

_ 6___28-3’"“ } _ . (4.16)

in which the final form of the potential is the most informative. The rapid convergence of the final series
in Eq. (4.16) is generally considered as assured by the assumption r >> r,. When one considers the small
portion of space encompassed by the atom, this assumption appears reasonably valid. It is true, however,
that the question as to what transpires when the broadener closely approaches the emitter is a rather
embarrassing one.

Holtsmark deals with the three cases (a) none of the terms disappears (b) the first term disappears
(c) the first and second terms disappear. The rapid convergence of the series tells us that we may neglect
all terms but the first in case (a) and all but the second in case (b). Case (c) would appear to be self.
explanatory with respect to ignoration. Thus, these three cases yield the following field producers:

1. Ions

2. Dipoles
3. Quadrupoles
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An ion may be defined as a charged molecule. A dipole may be defined as a system of charges which
gives rise to the second term in Eq. (4.16) but not to the first. A quadrupole is defined by the third term
in this equation.

For these three cases we must now specify 8 * E where E is the electric field strength and s is the position
vector.

For the ion we have:

Ze, e
r

(4 (4 r,l'

r
which gives:

s-E=—’-§(r~s)=—;'-2:cos0 “.17)

In Eq. (4.17) s = | 8 |, and & is the angle between r and s. The dipole potential is

r-Zer, Tk ,
S " (4.18)
where 4 is the dipole moment, a definition of convenience. Hence:
r.g 1 3 p o 3r(r-p)
E:v = ___=-.=_.V(l'- )-———l‘r- == - = 4.1
o=Vt = IVe e =5 - (4.19)
So that:
s E= L@ w-3c-we (4.20)
r = =

In Eq. (4.20) we may write:

B:u=suco8a; T-uy=rucosfl; 8- T =38srcosy

Now consider Fig. (4.1).

Spherical coordinates may be introduced as follows. s is taken as the polar axis. « and y are then the
polar angles 3, and &, respectively, and the azimuth angles ¢, and ¢y are as indicated. B, the angle between
g and r, is given by:

cos 8 = cos ¥ cos ty + sin I, sin dy cos (o1 — 1) (421

Substitution of Eq. (4.21) into Eq. (4.20) yields:

a~E=’1—‘-u[cos»él—3cosdg(eoedlcm0,+sinvhsint’geos(¢;—ﬁ))] (4.22)

Finally, the quadrupole potential must be considered. This potential — the term in braces in Eq. (4.16)

— may be simplified by a rotation of the coordinate system which has been attached to the molecule. The

quadrupole moment is analogous to the rotary inertia tensor, and we may diagonalise the matrix of this

moment by a rotation of the coordinate axes to which it is referred, thus eliminating terms of the type

2 61,y We can assume this operation to have been carried out so that only the diagonal constants of the
quadrupole remain.

6 =Zex'; 6 =26y’ 6 =1Ies (4.23)
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If an atom is symmetric about some axis we obtain an analogy to the symmetric rotator case of the
moments of inertia. Holtsmark assumed this simplification so that 6, = 6,. Hence:

‘- 22[ (-%)+ra(-%)+a(-3)]

A
= G- 0~ -y 2 = 28 (424)
where:
From Eq. (4.24)
E=2- —’i’f(z —5-‘-’-’)
ox 2rt r
de Ay( p=) dp Asx ( ﬁ’)
E,j= — =-—=(2-5~—]); = — = —|2-5= 4.25
Vo ooy 2rt P R PR r (4.25)
Again spherical polar coordinates are adopted as shown in Fig. (4.2).
c is the molecular figure axis. It follows that:
s, = ssin ¥, co8 ¢, x = rein J; cos ¢y
s, = s sin J; sin ¢ y = rein 0, 8in (4.26)
s, = $Co8 v Z = r Co8 a,

Utilizing Eq. (4.26), we obtain:
s E=sE,+sE, +sE, = ZA_r‘ 12 cos 9, cos ¥, —sin &, sin J, cos (¢ — cp.)} (7T —-15cos 9y (4.27)

A consideration of Eqs. (4.17), (4.22), and (4.27) indicates that these three cases may all be represented
by:

s'E=£;w, (4.28)

where w, is a function of the angles and p may take on the values 2, 3, or 4.
Eq. (4.28) may now be substituted into Eq. (4.12) to obtain:

J=——/ /er'cdxldx, . dxn (4.29)

The transformation of the coordinates x,, . . . , x,, to the coordinates r,, ¢, ds, ¢1, o is in order. After
the transformation all positions are referred to the center of the molecule and, further, all directions of a
vector from this center are equally probable. Thus, since the molecular distribution is a random one:

odxydxs . . . dx,, = ridr sin 0,d0,; sin hdddpden (4.30)
The limits of integration are taken as ¢ from 0 to r, ¢ from 0 to 2x, and r from 0 to R, thus enclosing
the gas in a sphere of radius R.
It follows that:
V=f...fﬁanino,do..inw¢.a¢.-l%."m (431)

Now the transformation to solid angles is made by utilizing the relations:
dQ = sin dydddg, ; dQ' = sin dyddrdy (4.32)
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so that Eq. (4.29) becomes:

I=5 [/"“‘“’f”" dr e

[V

8/p
Ifweletu = 352 then (% du = ridr and Eq. (4.33) becomes:

p
sw, 3/p 3+p
"’“//M( )/‘“‘ T (4.34)
o o

sw
where o = —2,

RP
Eq. (4.34) cannot be carried further for the general case, but rather, it is necessary to consider it sepa-
rately for the ion, the dipole, and the quadrupole. These three cases will now be considered in this order.

44. THE SPECIAL CASE OF THE ION

In the case of the ion p = 2, and the integral in u may be successively integrated by parts to obtain:

/e"‘u‘“’”du - _2:;“-3/2 N + =172 + /‘esu,f-l/zdu (4.35)

The integral on the right of Eq. (4.35) may be evaluated as:

® a
/eiuu—l/2d“ =/e€uu-—l/2du _/eiuu—llzda
0 1]

= e‘fr(;) —/(1+iu+§i”u’+ o du 2 dy
]

= Vr e'._:_ - 247 — 2 o — 2, li’a“2 “ae (4.36)*
3 5 2
This series for « appears reasonably well justified in consideration of the small value of a. A straightfor-
ward substitution of Eqs. (4.35) and (4.36) into Eq. (4.34) yields:

3 a8/2 [2
J = dQdsY < < -3/2 s 1/2 w
162K 2 " 13” +

+ 4 o (,/“i% — 9417 — Eaa/z —-.. )] 4.37)
3 3

All terms in Eq. (4.37) with the exception of the first term in the bracket and the first term in the
parenthesis are now dropped as small so that, after developing ¢ as a power series, one obtains:

1 1y —
=F1r’-f dﬂdﬂ'[l+ia+2i’\/re‘*a3/2+...], (4.38)

A rather appalling number of terms have been thrown out in the last few operations, but the facts that
(a) one is forced to pursue this course in order to solve the problem, and (b) the development has been

predicated on large R, do tend to justify the ignoration.
- L)

*By definition I'(s + 1) = f ule ~Vdy = !
0
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wy is a cosine function. Thus, a, which is a function of wy integrated over @ and &’ is zero. Egq. (4.38)

. then becomes on partial integration:
= q ‘ ‘ v/, 3/2
J=1+2tVre't 161’ /dﬂdﬂa (4.39)
: 1
If we set iy = T~ / dd'uy®’? Eq. (4.39) becomes:
4x N
_ 82 =
J=1- i an Iy (4.40)
M
N, is obviously a large number. Then since (l - —\) = ¢ ¥, we may write:
1
- 2
N1 - Y3/ — -
J' = exp( Vre'4s 3 41er,) (4.41)
Also,
iy = o f / / 3/2 008®/29, sin 0101 dpdQ = &7 } / cos®/%9, sin 9,d,
&2 } [ cos®? 9, sin 8,d9; = €/ (1 —i) (4.42)
/2
. So that, when it is recalled that e ‘4 = *2‘ ! Eq. (4.31) becomes:
JNI = exp (__ 8152_' 'Ns3/2¢!/2) = e~4.2th"'¢"' (4.43)
4.5. THE SPECIAL CASE OF THE DIPOLE
We turn now to the calculation of J*' for the dipole. The integral in u in Eq. (4.34) is:
@® o [ ] L]
/ u"%du = ae” + i f éu"ldu = ae™ + i[ / u~ldu — e"‘u"‘du] 4.44)
a« a 0 0

where here a = 22
R

We replace —1 in Eq. (4.44) by —1 + A where A is very small and may be set equal to zero in the limit.
This gives:

f(d,A) / 1% _H'Adu uu—H-Adu

(] 4]

=L£)—/u“+“[1+iu+}i’u’+..‘.‘]du
i
0
=F(A)_[“A ot B
» it +2

(4.45)
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By MacLaurin expansion:
a® 14+ Aloga+... 1
= = +1 “es 4.
n A - + loga + (4.46)
From the relations:
TAIQ —A) = —
in Ax

I — A) = I(1) — AI'(1)

T (1 —-ir A)
2

one obtains:
I'(A) (l - ilzr'A> 1
- x il /) _ 1 .
= T ame TO-AT@] T 2 [P M ] #47)
Substitute Eqs. (4.46) and (4.47) into Eq. (4.45) and pass to the limit A = 0 to obtain:
flah) = I'(Q) —i-g—loga—ia—g-z——-... (4.48)

Eq. (4.48) in conjunction with Eq. (4.45) yields:
-1 u ’ T _ - - l_’i - ‘
J= — // [ + t(I‘ 1 —-iZ 2 log a — ia 23" )~.:| (4.49)

Develop €“ in a power series; insert the value for ¥ and for aR* = psw; and utir se the fact that
/ / a ddQ’ = 0 to rewrite Eq. (4.49) as follows:

J=l_il61‘R‘3.//M [loga+ G+ Har+...] (450)

The expression for a is substituted into Eq. (4.50) and all terms of higher order than alggeg « are dropped

as small.
i HSwy us
- —31(1 log — ) dQdY .
1w// B (°‘“"+°"R') (451)

In Eq. (4.51) log % will be a constant for the integration so that this term, due to theposeriodlicity of w;,

will be sero after integration as has occurred in the previous development. Again the nuecer of atoms per
unit of volume will be NV so that:

N, = ;;-t RN (452)
Also let:
0 = — /w.loswam (453)

m
Using Eqp. (4\.52) and (4.53) in Eq. (4.51) and applying the approximation (l - -;v-) ww= ¢~ *we obtain:
1

FL L (454)
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whem @, is defined by Eqs. (4.53) and (4.22). Holtsmark evaluated Eq. (4.53) graphically and obtained
= —0.345xi. Thus Eq. (4.54) becomes:

JN' - e—;—r'c(O.Mﬁ)»N= eq.u-m (4.55)

4.6. THE SPECIAL CASE OF THE QUADRUPOLE

Finally, J¥ for the quadrupole where p = 4 must be evaluated. For the quadrupole:
3/4
_/ (‘;;;:’ ) / wu—7/4 du Ml‘ (4.56)

The integral in u is evaluated in the same manner as was done for the ion.
@

K +2
f eu~"dy = L; [e‘“a-s“ + ie31(}) — 4id/t - 4-;—0,“/*—. . ] (4.57)
where a = 4—2"-‘
2R,
Hence
3/4
J= = f f dde [1 + €'r@}) (Aiz'ﬂ _1_8] (4.58)
Ry
In Eq. (4.58) higher order terms have been dropped as in the ion and dipole cases. We then obtain:
. 4 3/4
JM = exp [etlr P(}) _;:N(:%!) 0 a/t] (‘4.59)

where, as usual:

5‘3/4 = r!‘F//Mw'/‘

Utilizing Eq. (4.27), Holtsmark graphically evaluated wd’* to obtain w/¢ = .70 (1 + #*/2).*

Hence:
. i /
JM = exp [e""l‘(})%’. 70 (1 + e'*') N( %‘)‘ ']
Note that:
llr(l + eq,) = l|f+ sir | e - '|r+ e 2 00&5'5"‘—‘ —0.7665
r}) = 3.6256
Hence:

JN 1= @—48TN(42) 1 (4.60)

Eqgs. (4.43), (4.55), and (4.60) thus provide J¥! for the three cases under consideration. We may now
turn our attention to the evaluation of W(X,Y,Z;) as given by Eq. (4.13).

4o
w( XoY ozo) = 8—1;-5 / / / ded"dn-i(tx-hl’--}-(zo j”‘ (4.61)

*Inhis first paper on the subject® Holtsmark gave the value 1.66(1 + i¥/s). He later reported*” an error as a result of
this value which indicates that the correct value of w4 should be as given above.
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4.7. THE FIELD PROBABILITY FUNCTION FOR THE THREE SPECIAL CASES

Holtsmark chose the dipole case for the first evaluation, since, in Eq. (4.55) s has the exponent one. For
the dipole then:

+
W (X, Y Z,) = é / j / dtdndpe X0+ 1To+{20 o (4.62)

where: ¢ = 4.54 iN.

In Eq. (4.62) X,Y,Z, can be taken as the components of a vector E, which is independent of s, the
vector with components £n¢. Then the exponent in Eq. (4.62) is obviously the dot product E, - 8 = Eys cos ¢
where here ¢ is the angle between E; and s. Now transform from the rectangular coordinates é{ to the
spherical polar coordinates sd¢.

dtdydd = s* sin 9dddds
Eq. (5.57) thus becomes:

v 3w ®
1 . ~iBuoos &
V(XY Z,) = — sin 0dddpsidse™" "% Cg~ce (4.63)
2
Integrate over ¢ and ¢ to obtain:
1 fogease 24
WX YZ) = 15 [ vise™ 2 din (Ee) (4.64)
We write sin(Es) as an exponential and take the imaginary part.
W (Xo¥iZe) = 3{ £ by, | (4.65)
Let —t = (—c + Eu) so that the integral in Eq. (4.65) becomes a gamma or factorial function.
1 Q) 1 a

Eq. (4.66) gives us for the dipole the field strength probability function which we have been secking.
A “Normalfeldstarke™ may be defined as:

E, = a = 454uN (4.67)

Let B give the relation between this ‘‘Normalfeldstarke™ and the actual field strength.

o B
E, (4.68)
Now we replace the volume element qud YdZ, by 4xE}E, From Eq. (4.66):
WXYZ) = 5 v o ™ T o
( Eo’) TRAT e (4.69)
Hence: W(Ey\)dEy = 4xE¢2W (X,YoZo)dE,

4_ 1 B _ 4 @
A+ BT ar e (4.700)
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Fig. (4.3) furnishes a plot of W(E,) vs. 8 as given by Eq. (4.70a). After we have obtained W(E,) for

v the ion and the quadrupole, we can consider the significance of these plots.
The case of the ion may be taken up next. As in the case of the dipole, let
' E -8 = Epcosd (4.710)
dtdndd = s* sin ddddds (4.71b)
JVi = g —ANSnN et/ (4.71¢c)

After integration over ¢ and ¢ the equation which corresponds to Eq. (4.64) is obtained as:

W (X, YeZo) = 4’_2 s’ds —ent/! Eﬁ-; sin (Eos)

0

4.72)*

The integral in Eq. (4.72) is not directly evaluable, so that a series development of sin (Eqs) is called for.

21, _ E,
Let: Es = 02/3; == —d ”3; = ————
™ SRV AT R (4.73a)
and:
sin o/ = ¥4 — lw: + 5o ow/- w—t—o AL S (4.73b)

Upon substitution of Eqs. (4.73) into Eq. (4.72) we obtain:

) = —l— l/a' — / / ———]—'— /
N W(X,YoZy) = 3”Eo,/e E, [v 607 34 ov“ 3 50400‘“+ ] (4.74)

It is apparent that each term in Eq. (4.74) can be expressed as a gamma function.

1 cs E 3/3
" 75 (2
Then: E, = a®? = 2.61N*3 (4.75)’

4
If we take as the mean separation of two of the particles ro, then 3 »ro’ N = 1 where N is, as usual, the par-

ticle density. This mean particle separation would then give about the same result for a normal field strength,
namely, for E,’ = 2.60 N*/s ¢,
Again we take the ‘“Normalfeldstarke” as the unit of field strength. Eq. (4.74) becomes:

1
WYL = 3op [r(z»s' - —r( ) ris (——) BT . ] (4.76a)
Or: W (X, Y, Z)) = on' [ﬁ' — 0.46288* + 0.122787 — 0.023255* + . ] (4.76b)
In analogy with the dipole case:
W(E)dE, = W(X,Y,Z,) xEdE, = p’dﬂ(l — 0.46288" + 0.12276 — 0.023256% + ...) (4.76b)

© g\
*If we now let v = Egs we obtain Unsold’s Eq. (55) *® developed by Verweij!™, namely, W (8) = % veinve (7) dv.
. *Po



A consideration of Eq. (4.70b) shows that the series converges only for small 8. For the case of large 8,
Holtsmark wrote sin(E;s) in Eq. (4.67) as an exponential taking the imaginary part and expressed ¢~**""
as a series to obtain:

W(X,Y.Z) = 4#0 3 {f"dm""[l — o +%'s= -%‘s”’+-§’is' - ]} 4.77)
0

Eq. (4.77) may be expressed as a series of gamma functions if we lot iEs = —t.
W(X,YZ) = ——3 [ e , o r(l) ~1 e+l ol r(l-‘f')+ .. ] (4.78)

47, L (ioE0)* (iE.,)”’ 2/ 2GE) 6 GE)™ \2
Henee: W (Ey)dE, = pm B 1496 (1 + 2359 ;/525 +1‘; n8, 0 o+ ) (4.700)*

The plot resulting from Holtsmark’s incorrect versions of Eqs. (4.70b) and (4.70c) is given in Fig. (4.3).
Finally, the probability of a field strength E; must be calculated for the quadrupole. As in the two
preceding cases, integration is first carried out over ¢ and ¢ to obtain the following:

W(X,Y,Z) = L / ) (4.79)
2n? A Eys
‘We make the substitutionsv = Eisand 8 = —E—° which yield:
co
W(X,Y, -(%) e vdv 4.80
% oZ.,>—2ﬂ,—Eo/ vsin (480)

When the exponential is expanded in a series and sinv is expressed as the imaginary part of an expo-
nential, Eq. (4.80) becomes:

rocnas =l ool ) A 2 o)

The series in Eq. (4.81) will not be properly convergent for small values of 8. Each term in Eq. (4.81)
is a gamma function. A straightforward arithmetical calculation after the substitution of 8 and the gamma
functions yields:

44p 0.730 _ 0.328 , 0.621 _ 0,163
W (Eo)dE, = BMOBOS[I— R +] (4.70d)

The factoré has been inserted for comparison with the previous Eqs. (4.70). Again 8 = -EE—3 where

T
E, = *2.
For 0 < 8 < 1, Holtsmark utilized graphical integration to obtain:

W (Ey)dE, = éﬁ'dﬁ%(l — 24480 4 11258 — 1268° +...) (4.70¢)

*Holtsmark obtained
W (E)E: = W’ 2.350 [1+5—19,:-7~—“—-75+ ]

but a check of the work preceding is sufficient to show that this is not correct. Also, see Verweij!'™* as reported by Unsold***
which is almost correct. Holtumark's equation corresponding to our Eq. (4.78) is also slightly in error.



Eqgs. (4.70d) and (4.70e) yield the quadrupole curve in Fig. (4.3).

Fig. (4.3) tells us that, since the probability of zero field strength is zero, we must expect some broaden.
ing due to the Stark effect under any conditions. The maxima of the three curves give us the most probable
field strengths in the three cases, and it may be noted that the slopes of these probability curves vary. The
positions of the maxima indicate that the ion yields the greatest relative broadening, the dipole the inter-
mediate, and the quadrupole the least., It should be recalled, however, that, since 8 depends on a different
“Normalfeldstarke” E, in each case, these comparative considerations cannot be directly carried over to
comparisons of broadened lines in the three cases.

Egs. (4.70) now give the probability W(E,) for the existence at a certain time of the field E, due to one
of three causes. As has been mentioned earlier, there is a continuously varying field, so that we must specify
a certain time at which there is a probability W(E,) that E, exists. The broadening of the spectral lines
due to one of these fields may now be determined.

4.8. GENERAL INTENSITY DISTRIBUTION IN A STARK BROADENED LINE

Let us assume that a spectral line is emitted at the time when the field E, exists. E, will then split the
line according to the Stark effect. Let the intensity in this split line be given by:

Idv = I(Ey») dv (4.82)

I is then the intensity in any relative units for the frequency v and the field strength E. If we multiply
this intensity distribution by the probability for the field strength Eand integrate over all E, we obtain the
intensity distribution in the broadened line as follows:

Idv = dv / I(Ey) W(E) dE (4.83)
0

Instead of attempting to utilize an accurate but overcomplicated expression for I(E»), Holtsmark
makes a rectangular assumption for the broadened spectral line, that is, he assumes I(Ep) to be a constant
within the limits of the line and zero outside. Thus, for a particular field strength E we have a rectangle
of height h and width 2v,, where 2»,, is the separation of the outermost Stark components. The area of this
rectangle, which is the integrated intensity, is taken as a constant which is independent of E. This is an
approximation, but a reasonably good one. We would, of course, obtain rectangles of different width —

different 2y, — for different values of E. The integrated intensity of the line is:

f = 2vph = 2v,,I(Ep) . (4.84)
Thus: KEyw) = EL inside 2v,, and: I(E,») = 0 outside 2»,, (4.85)
Vm

Let us take » as the frequency of the line before splitting. Then it follows that all rectangles for which
¥m2 |» — w | will contribute toward the intensity at the frequency ». In order to obtain the total intensity,
integration is carried out for all rectangles which are wider than 2»,,:

®

Idv = dv f z_f- W(E)IE (4.86)

m
E' is that field strength which causes the splitting 2(v — »), and v,, is given by:
2 = cE 4.87)
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where c is simply a proportionality factor. Eq. (4.86) becomes:
®
Idv = dv f IE W (E)dE (4.88)
c
b4

The evaluation of Eq. (4.88) for the three cases yields the desired broadening. First, we consider the
case of the dipole.

49. LINE SHAPE AND HALF WIDTHS ACCORDING TO THE EARLY STARK THEORY
When Eq. (4.70a) is substituted into Eq. (4.88), the result is:

Iy =at [ L BB _g4 J 4 1 (4.89)
x | cE, (14-8)? 2¢E, » (148"
(3

_2.£V_T-.l.L) = 2_A_y., sothat:

in which 8' =
cE, cE,

10 =4 cEy (4.90)
rCE+ 4 (v — n)?

The half-width of the line can be seen to be:
b = cE, = ¢ 4.54 N (491)

An interesting sidelight seems worthy of introduction at this point. Let us set our integrated intensity
f equal to S, a trivial but legitimate move. Then let us substitute Eq. (4.91) into Eq. (4.90) to obtain:

I6) =3 (Gu/® (4.92)
(v = w)? + (5,4/2)

Eq. (4.92), the line shape equation for an emission line which has been Stark broadened by a dipole
field, is identical to Eq. (1.78), the line shape equation for a Lorentz broadened absorption line. Holtsmark
made no mention of the relation and his final equation was in the form of Eq. (4.89).

The dependence of the line half-width on the electric dipole moment and the gas density is apparent
from Eq. (4.92). With which comment we turn our attention to the ion and the quadrupole.

Eqs. (4.87) and (4.88) may be rewritten as:

2, = cE,B (4.93)
Idv = dv L f LA (4.99)
EJ 8

Holtsmark evaluated Eq. (4.94) graphically for the cases of the ion and the quadrupole. Fig. (4.4),
after Holtsmark, represents his results for the intensity distribution for all three cases. In Fig. (4.4) the
abscissae have been changed for the three perturbers so that the half-widths coincide, thus giving a curve
shape comparison. The half-intensity §’s for the ion and the quadrupole may be obtained from the curve
as 1.25 and 0.67, respectively. These values of 8 yield the half-widths:

Ion: 8, = 1.25¢E, = 3.25¢N?/3¢ (4.95a)
Quadrupole: bg = 0.67cE, = 5.53¢N*?4 (4.95b)
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4.10. REVIEW OF HOLTSMARK'S EARLY STARK BROADENING THEORY

Let us rapidly review this development before beginning its refinement. We began with the assumption
that a spectral line is broadened by a Stark effeot which arises from a rapidly varying field produced at the
emitter by (a) ions, (b) dipoles or (c) quadrupoles.* We assumed that the probability W(E), that a field
strength E; exists at the emitter at a certain time, is a function of E;. A rather laborious derivation yielded
Egs. (4.70a) through (4.70c), the equations for these probabilities for the three cases under consideration.
A linear Stark effect, 2v,, = cE, was assumed. I(E,») was assumed constant for a given field strength within
the outermost Stark components and zero outside. Thus, each field strength yielded a rectangle of different
width, but the same area. For a given frequency then, we integrated over all rectangles whose width is such
that they contribute to the intensity at this frequency. Eq. (4.88) for the intensity distribution within the
Stark.broadened line resulted. For the dipole Eq. (4.88) yielded the line shape:

.S (3,4/2) :
=2 v — w)? + (0,4/2) “92)
which is identical with Eq. (1.78). Eq. (4.88) does not lend itself so readily to evaluation for the ion and
quadrupole cases.

8, = 3.25¢N?13¢ (4.95a)
8,0 = 4.54cNu (4.91)
84 = 5.53cN*?4 (4.95b)

Eqs. (4.95a), (4.91), and (4.95b) show the dependence of the half-width on the electrical properties
of the perturbing molecule through e (charge), u (dipole moment), or 4 (quadrupole constant) and also on
the gas density through N (the number of perturbers per unit of volume).

These equations are also the ones through which Holtsmark sought experimental verification of his
theory. Since the theory is to undergo further development, there does not appear to be any particular
reason to enumerate Holtsmark’s comparisons of it with experiment at this point, although he did meet with
some success in these comparisons.

4.11. NEED FOR FINITE MOLECULAR DIAMETERS IN THE HOLTSMARK THEORY

It may be recalled that we have essentially considered the molecules involved in the theory as points,
in that, when the integration was carried out over the molecular positions in space, no portions of space were
excluded on the basis of previous occupancy. In 1920 Debye,** while in the process of deriving a mean square
7alue for the quadrupole electric field strength due to an atomic collection, commented on this punktformig
assumption. ‘Zur Bestimmung von £? kaum man nicht die von J. Holtsmark, diese Zeitschrift 20, 162,
1919, entwickeite Wahrscheinlichkeitsformel benutzen. An jener Stelle wurde namlich der Durchmesser
der Molekiile zu O angenommen und dem entspricht es, dase aus den Holtsmarkschen Formeln & =

*Debye® obtained approximate expressions for these ficld strengths and hence, an idea as to the behavior of the half-
widths as follows. Electric charge is taken as 5 )X 10~10gm,}/* —cm, 3/ —sec. ! and the radius of the molecule as 10~* cm. We
assume that (a) the ion has charge 5 10~ gm!'? —cm?** —sec ! (b) the moment of the dipole is 5)X 10~ gm!/? —cm%*sec ~!
and (c) the quadrupole constant is 5 X 10 =% gm!/* —cm?? —sec . Since the electric field has the units gm!/* —cm¥/* ~s0c 1,
and since we may assume the ficld to be the product of either (a), (b), or (c) and some power of N (molecules — cm ~?), this
power of N may be adjusted so that the product has the proper units, thus yielding approximate expressions for the electric field
in each of the three cases. Hence, we obtain for (a) E = (N3, for (b) E = uN, and for (c) E = 8N*? or 4500 ESU, 135 ESU,
and 4 ESU respectively. Multiplicative constants would yield the values obtained by Holtsmark.
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folgt. Es mige in diesem Zusammenhange bemerkt werden, dass auch bei dem von Holtsmark behanditen
Problem eine Beriicksichtigung der Endlichkeit der Durchmesser erwiinscht ware, um so mehr, als dadurch
die Druckabhiinigkeit des Verbreiterungseffekts beeinflusst werden diirfte.”?* This appears to be a reason-
able assertion, and so Holtsmark evidently considered it, for in 1924, he attacked the problem again,*’ this
time with finite diameters assigned the molecules under consideration. Gans® had approached the problem
earlier under the assumption of finite diameters for the emitting molecules, but he had retained the point
assumption for the broadening molecules. As Holtsmark noted, this would be a good assertion for the case
where ions are the field producers, since we would normally expect the ions to make up only a small portion
of the total number of molecules present. On the other hand, these assumptions would not appear to be
valid for the dipole or quadrupole case. Gans further found a Gaussian distribution for very high field
strengths, “ . . . wie zu erwarten war.”"

In this development, Holtsmark retained the simplifying assumption which classifies the broadening
molecules as ions, dipoles, or quadrupoles, that is, he again took only the first term in the series for the poten-
tial. Since these assumptions are predicated on large R, it is apparent that when the gas density or pressure
is high, R no longer remains large enough to justify them. How high ‘‘high” is, is, of course, a matter for
discussion.* For these “high” densities the calculations cannot be carried out, but the field strength dis-
tribution in these cases is assumed Gaussian.** Holtsmark thus limits himself to those gas densities where
the first term in the potential series does give a good approximation of the electric field.

4.12. THE FIELD STRENGTH PROBABILITY FUNCTION WITH FINITE MOLECULAR DIAMETERS

We begin with Eq. (4.11) written in a slightly different form, since the modifications in the development
will occur at a later stage.

W(XoYoZo) = —/ffdfdﬂd{e-'(ex'+'y.+‘z.) /dei(ﬂxri-!!Yn-"ﬂzn)dr/ odr (4.96)
Again:
£Xo + nYo + £Z) = sEycos 0, ; dtdndt = sids sin 9,d9,de, (4.97)

where in this case E; has been taken as the polar axis and s has been referred to it. Substitute Eq. (4.97)
into Eq. (4.96) and integrate over 4, and ¢, to obtain:

= 2E L(s) ‘
W(E) / de s s (Bu) L0 48)
where:
L(s) = f dr g P Xnt1Tat (4.99)
M(s) = / sdr (4.100)
If x is the angle between s and E,
Z(EXy + oY, + {Z,) = sZE, cos x, (4.101)

‘Innoomhuimihroonddenuon,Spntm(oeemﬁ'a,dﬁs(}hp)ukuullinitammchthtk > 10r, where
r¢ is the radius of the Bobr orbit.

o o ——

JEE Y
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Now in the computation of L(s) and M(s), the finiteness of the molecular diameters is to be taken into
account. In the earlier computation, it was possible to transform Eq. (4.16) into Eq. (4.18), a product of
identical integrals. This was legitimate, due to the independency of the molecules, in that the motion of
one molecular point is not interfered with by the other molecular points. This integral product is no longer
admissible after finite diameters have been assigned the molecules, for we may not now allow the center of
a molecule to be separated from the center of another molecule by less than this molecular diameter. We let:

E, = ¢*Erooexn (4.102)
so that:
Ni
L(s) = [dre I E,
i k-l
= / Ejﬂldfg f Egd’:dﬂ PR / ENlaNld‘er (4.103)
k ks ky

1

where the first integral is carried over the space not occupied by the other (/V; ~ 1) molecules and the 0-th
molecule (emitter). Thus, the first integral is dependent on the coordinates of the other molecules and must
be included under the integral sign of the second integral, and so on. This fact obviously does not simplify
matters. The difficulty may be eliminated, however, by selecting a suitable initial distribution for molecules.
This selection would appear to be justified, since our results should not depend on the arbitrary initial
distribution of the molecules. *“Thus, we choose the initial positions of the atoms such that they are all
united in space at an arbitrary position which, however, is constant for the duration of the N — 1 first
integrations. . . .”’% The position of the first molecule was chosen for this union. After locating the mole-
cules in this manner, we may move molecule /V; about space in the process of the integration, while keeping
the remaining molecules at position one. This process is carried out for N; — 1 of the molecules. Thus, we
see that the first integral contains coordinates which require that it be included only under the integral sign
for molecule one — we are working backwards, one might say, from molecule NV} to molecule one. The
happy situation prevails for the first V; — 1 integrals. Let the integral over all space except that portion
occupied by the emitter be:

f Enondr, = H (4.104)
En
Further, let the integral over that portion occupied by the IV, remaining molecules at position one be:
f Enondry = H, (4.105)
ak
This notation yields for the first integration:
(H = Hy, -1)
After N; — 1 integrations we have:
Ni-1
L) = [odn =T @ - H) (4.106)
nm

where Eq. (4.106) is to be integrated over the entire coordinate range excepting that portion occupied by
the emitter.
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Substitute Eq. (4.30) into Eq. (4.105) to obtain:
H, = f . r* sin 01dd; sin &'dd'dprdy'dr

r v dx

Zn / / / / / ridr sin 9,66, sin 8'd¥'dpdy’ = nZEdxk (4.107)
0

~ where k is eight times the volume of a molecule; nis the number of molecules at position one; Z,is the valueof
Z at the position of the first molecule, and d is the diameter (closest separation of two molecular centers)
of a molecule. This approximation is only a good one if nk << V, the total volume; and also only at some
distance from the emitter, since = could not be taken as the constant Z; for the integration for position one
close to the emitter.
If we let V differ from its previous value by a factor of 4x we may write an analogy to Eq. (4.29) as:

H = 4xVJ (4.108)
We substitute Eqs. (4.107) and (4.108) into Eq. (4.106) to obtain:
Ni— kE ‘
L(s) = 4=V )M ! / Eodn I (l - n~——) (4.109)
n=] VJ

n
M(s) may now be calculated in a similar manner. Integration over the Nj-th atom yields
4x(V — (Ny — 1)k), and so on up to the last integration. We obtain:
N,N:—l nk
M(s) = (4xV) II (l —7) ‘ (4.110)
Now let:

f'-v d Nlﬁl (1 kEl |
K(s)J" - =& - _.!_JM-I k:lﬂ 71 ol n-ﬁ)
M(s) 4xV N —.1( nk)

(4.111)

1—-—=
vV

We have assumed nk <« ¥ so that Ni '—% = Nie K 1. This fact allows the approximation:

nwl

Ni~1 Ni~-1 ng Ni~1 N,
log I (1—ng= 2n¢=’=-—2-u—-—> I (1 -ne=e 2 (4.112)

L 3] A

Nith %

K(s) = k”_/-"zdre -5 v+zV

= ;‘: / E.‘mdne""' (4.113)

?_‘_’f N)k
WA

A transformation of coordinates at this point facilitates continuation of the calculation. Let:

odn = ri¥dry sin xudxi sin vidy: (4.114a)

so that: k, = %m (4.114b)

where: , eight times the ratio of molecular to total volume.
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where ry is the radius vector of molecule one; x; is the angle between s and E), and v, is the angle between r;
and the molecular axis. The legitimacy of this transformation is assured, since we may recall that we are
now integrating over the entire volume. E, is a function of ri, v1, and the electrical constants of the mole-
cule. Holtsmark limited his calculations to dipoles as field producers, since he felt that in the case of finite
diameters the complexity of the calculations for ions or quadrupoles was too great, if, indeed, a reasonable
result could be obtained.

From Eq. (4.19): E = % w= _,“3 V1 + 3 cos’ v (4.115)
Let: 3=3sE = s% w (4.116a)
Ig r ¥
3¢" . s coes
Hene: K@) = 3 [ [ [ aremeemate* s, sim by sin @1
00O

where the lower limit » = 0 introduces “ . . . no noticeable errors.” Integration over x yields:

* R
K(s) = 9'—:1 /sin 714171/’1’ drx-l—e_"m'sin (a sin z)
az

2R
0 0
14 R 1
3 . —a s—1gin s
= z— 5‘1?:3 {/sm Tdn /rx’dn;e (cos )} (4.118)
0 0
where the imaginary part of the exponential has been substituted for sin (« sin z).
From Eq. (4.116a): ridr, = —spwz"dz (4.116b)
« [ 4 [
Hence: K(s) = -28—- /dyl siny -z J { /d:z"e""‘ }
« 0 "
=P} / dy sin 7 (4.122)
0
where: u=-e¢" =coss — isinz (4.123)

Instead of integrating Eq. (4.122) along the axis of reals from 3 to « , Holtsmark integrated around a
path in the complex plane (z = x + iy) — which, it may be noted, includes no singular points — as shown
in Fig. (4.5).

We desire only the imaginary portion of the result. The integral along BC is real, so that it contributes
nothing to Eq. (4.122). The integrals along CD and DE disappear for Y = @ and 2 = « respectively.
Thus, by Cauchy’s theorem,* the integral with limits 3, and «, which we desire, is equal to the integral
along AB.

Let: 3=mne P e—ds = — nie"*dp
Since 21, a K 1,
Let: u=e Y =1—ize™ 4 ... % 1—ige"
And: o™ = ¢ | | jame — "‘_’2i"e-"'— ii“-';‘i'e-"" —-.. 4.124)

*Cauchy’s theorem states that the integral around a closed path in the complex plane which includes no singular points is



Eq. (4.124) yields for P, after integration:

"

Pi=1+%an+2 4 .. (4.125)

4 6
1 : F k3 a’x;’
SO‘ that: K(S) = E d‘h sin 1 1 + ZaZt + '—6— + v (4.126)
0
Let: I—Vic = b; M = Ne—raz? = é xbNusw (4.127)
2v PR 3

We now substitute Eqs. (4.127) into (4.126) and drop all terms after the second in the series in the
resulting equation to obtain:

+
Ke) =1+ ngus \ /1 + 3xidx = 1 + 4.54 bNps (4.128)
1

where x = cos 7.
An objection to taking the upper limit of z as infinity (r = 0) may well be raised for this would mean
that the molecules are point masses in that the emitter is infinitely close to the broadener for 3 = .
Holtsmark felt that *“ .. . For the cases which are encountered in practice, this effect is insignificant.”%
We have assumed large N; and, essentially:
L(s)
M(s)

The quantity lim J¥' " is nearly the same as has been given earlier for the ion, dipole, and quadrupole,

Ni—@

= K(s) Nlim Jh-t (4.129)

respectively by Egs. (4.43), (4.55), and (4.60). Instead of integrating from 0 to R to obtain J¥* !, we must
here take into account the finite diameters by integrating from a finite lower limit which is taken as the mean
of the gas kinetic diameters of the emitting and broadening atoms. If we let:

6= 4xNP ; 3= % (4.130)

where K, is ¢, u, or A4 for p equal to 2, 3, or 4 respectively, we may write Gans’® result as:
JM—I = e~*0p® (4.131)

Eq. (4.131) yields Egs. (4.43), (4.55), and (4.60) as a first approximation with a < 1. In second
approximation one obtains for the dipole:

JI1 o ANl (4.132)*

Thus, a constant factor has been introduced which depends on the mean molecular diameters. This
would also be the case for the ion and the quadrupole. Eq. (4.98) now becomes:

W(E) = & 2E, f dss sin (Eys) e 4N (1 4 4.54bNus)
g
)

~enibg { f dase(~454ee +B) () 4.545Nm)}
~
0

*As Debye® pointed out, this equation does not hold for Eg = o since W(E;) decreases too slowly for very high field
strengths, thus yielding an infinite mean value of Eq. Gans found a Gaussian distribution for these large E.

A



67

" 4 Eo’E N 3E® — E
* (E"+ E) /'{ T TR + E } (4.133)

where E/ = 4.54Npu.

The factor in brackets in Eq. (4.133) is identical to Eq. (4.70a) the probability for the case of point
atoms, while the remaining factors essentially correct it for finite diameters. Gans had already obtained the
corrective factor *’® which, it may be noted, is independent of field strength, and thus does not take into
account any field strength changes, and, as a consequence, this factor will not influence the broadening. We

should remember that Eq. (4.133) breaks down for very large field strengths, and the Gaussian probability
function must be utilized. Eq. (5.133) may be written as:

_4_ { .__'r’_}
i (»f i T+ @139

_ Eo
where: n = 7

A simple calculation shows the maximum of the probability curve to fall at y = 1 — b, while this

maximum is at n = 1 for the dipole on the uncorrected curve. The resulting line width is changed “ . . . by
the same per centile amount.”%”

4.13. DIPOLE LINE SHAPE FROM REFINED STARK BROADENING THEORY

Although Holtsmark did not work out the line shape for this corrected case, let us make the short
calculation necessary to obtain an idea of this shape. We shall utilize Eq. (4.94) and assume that for
7 < 1< 1", Eq. (4.134) yields the correct form of W(n) while for o'’ < n < e Erf (n) yields the correct
W(n). We are assuming n’’ very large. Eq. (4.94) becomes:

L]

3—»*} 4/ |
{1+b(1+”’) i+ a2 L[5t o)y

Iy = de? L L
~ cE, (1 + n?)?

= a/a4f‘°‘° n {1 53—"’}—”———-—" {l b3—n’}
rcE[/(l+ﬂ’)' Pare) Jaral tars s

+ fErf (han |

4 f "’3<2+5b)+<2+4b)»
0= @ + 27 + Ko

") (4.135)

The spectral line given by Eq. (4.135) neglecting the K(n”) term will still be symmetrical about the
line center. For small b, and b has been assumed small, the curve shape as given by Eq. (4.135) is very
nearly identical with the shape given by Eq. (4.89). A good approximation for values of b up to 0.0020 is:

I(v)=4 f_gn 1t _F en (l+2§)cE.
v2E, A+ =« E}+40—-n)

_ L oon_(+26) 6/2)
*° b=+ @20

(4.136)



Holtsmark calculated b for four monatomic and four diatomic gases on the basis of Debye’s work?®
and obtained values of b < 0.0020 in all but one instance.

4.14. LINE SHIFT AND QUADRATIC STARK EFFECT

We might now, with Holtsmark, consider another form of broadening which may arise. Suppose the
line is not split to give a band for the field strength E as was assumed in deriving Eqs. (4.89) and (4.136),
but that it is simply displaced by a frequency Av. Now for a linear Stark effect the right (or left) side of the
W (E,) curve is the intensity distribution curve for the broadened spectral line, since the probabilities of the
various field strengths will give the probabilities for a shift of the line by an amount corresponding to this
field strength, and hence, the relative intensities at those frequencies. If v is the line shift for unit field
strength, we may read the shifts of the line intensity maxima directly from Fig. (4.3) as:

Av =15 v E, Ion (4.137a)
Av = 1.0 v E, Dipole (4.137b)
Av = 0.65 v E, Quadrupole (4.137¢)

Thus, this type of consideration gives an asymmetrical spectral line whose maximum intensity has
undergone a frequency shift. Qualitative examples of this shift and asymmetry had been given by Takamine
and Kokubu'® for certain He lines and for ‘‘many metal lines” by Takamine.!*°

Fig. (4.6) shows a calculation of this same effect made by Holtsmark under the assumption of a quadratic
Stark effect. Holtsmark calculated the widths of the H line broadened by the quadrupole field of hydrogen
for pressures ranging from 0.3 cm to 20 cm., added the Doppler broadening correction to them, and compared
the resulting half-widths to those observed by Michelson. Not more than an order of magnitude agreement
can be claimed.

4.15. A COMPARISON WITH SOME EXPERIMENTAL RESULTS

A consideration of the displacements of Zn lines as observed by Swaim! ® shows that the theory gives
slightly better results for an ion field than a quadrupole where air is assumed as the broadening agent.
When Holtsmark attempted to apply this result to the broadening by air of the Li line A 4602 in a light arc
as observed by Stark, he found a variation of the observed from the calculated by a factor of 380, a goodly
variation.

Two possibilities arise from these comparisons of theory with experiment. (1) The Stark effect, if it is a
factor, is not the only factor which contributes to the broadening of a spectral line. (2) Simultaneous
broadening by both ions and quadrupoles or dipoles occurs, especially in the case of a light arc, and the fields
produced may be inhomogeneous ones.

A further comment in definition of this inhomogeneity may be in order. Let us consider, say, an alkali
atom in which we may only be concerned with the spectrum-producing valence electron. For our purposes
here we can deal either with a Bohr orbit for this electron or those regions of space where ¥ydr is relatively
high for the electron. Then in order that the fields producing Stark broadening be homogeneous for this
case these fields must be essentially constant over the region of the orbit or of high Yydr.

We have restricted our gas to low pressure in order that the results may be valid, and another restriction
has been inferred but not actually stipulated. If a given field E at time 7 is to broaden a line into one of the
rectangles which have been assumed for the various values of E, then E must be a constant for a time interval
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sufficient to allow the molecule to emit under conditions which will produce this rectangle. The field at the
emitter varies due to the motion of the molecular broadeners, and this then means that an upper limit,
which depends on the lifetime of the upper of the two quantum states involved in the emission, must be
placed on these molecular velocities, and hence, the gas temperature.

In 1925 Holtsmark and Trumpy™ measured the half-widths of several of the emission lines of Li, Ag,
Cu, and Ni. For all four of these elements the broadening field producers were considered as ions. For Li,
Eq. (4.95a) was assumed for the half-widths of the lines. The constant ¢ was obtained from the measure-
ments of Takamine's® except where otherwise noted in Table (4.1). Thus, when the line half-widths had
been measured experimentally E, was computed for the lines. This is not direct proof of the theory, but,
if, for all the lines, E,, is the same, it is in indirect support of it.

Separation of
outermost Stark Half

A Designation components for c Width E,

A 38000 volts/cm ESU A v/cm
4273 2p —4s 0.3617" 0.00284 — —
3986 2p —5s perhaps 1,001 0.00950 1.26 32000 (inacc.)
4603 2p —4d 4.67 0.0369 3.56 23200
4132 2p —5d 8.54 0.0678 6.95 24600
3915 2p —6d 13.62 0.1076 10.05 22400
4148 2p —5d 7.8087* —_ - —

Table 4.1

It is apparent that the three field strengths fall within a relatively narrow range, although it would not
appear that the number of measurements is great enough to allow the drawing of too many conclusions.
Holtsmark and Trumpy rounded off 24600 and 22400 to 24500 and 22500 respectively.

Takamine!®® had shown, as we have noted, that certain Ag, Cu, and Ni lines show the Stark displace-
ment effect which yields the half-widths as given by Eq. (4.137a). Holtsmark and Trumpy calculated E,
for several lines of these elements again assuming ions as the broadening field producers. The v’s as given
in Table (4.2) were taken from Takamine’s measurements.!8°

Desig- ¥ Half. En Current
Element A nation A Width v/em Amp
Ag 4476 2ps—3s 0.00021 — — 10
4226 —_ 0.0125 0.65 10400 10
4211 2p, — 4d, 0.0431 1.95 9000 10
4055 2ps — 4d; 0.0458 2.70 11800t 10
Cu 4531 2p; — 3s 0.000272 — —_ 15
4481 2py— 3s 0.000614 — —_ 15
4062 2p,—4d, 0.00546 0.66 24000 15
4023 2py — 44, 0.00418 0.53 25400 15
Ni 4411 —_ 0.00138 —_ —_ 20
3934 — 0.00300 0.85 54000 20
4018 — 0.0080 2.04 51000 20
3984 — 0.0112 2.72 48500 20
Table 4.2

In this case again, we see that, for thc various currents, the E,, fall within fairly narrow ranges.

*This is for a field of 80000 volts/cm.
tHoltamark and Trumpy gave 8100.
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4.16. THE STARK EFFECT IN PARABOLIC COORDINATES

Although Holtsmark’s theory of Stark broadening is basically a statistical one and, as a result, may be
associated with the statistical theory of Margenau,* we shall continue to treat Stark broadening separately.
Under this delineation we must proceed from a consideration of Holtsmark’s work in 1924 to Spitzer’s
studies'™ 17 of 1939. Before doing so, however, let us consider the Stark broadening of the spectral lines
of hydrogen from a quantum mechanical point of view. In doing this we shall very rapidly sketch the theory
as presented by Epstein® and Bethe.*

To begin with we suppose the electron to be moving in the field of its nucleus of charge e under the
influence of the potential —¢?>/r. A homogeneous field of strength E is imposed along the z-axis resulting
in the addition of —eEs to the potential. Finally, we transform to parabolic coordinates by utilizing the
relations:

x=VEn-cos¢; y=\/-53inp; z=1—‘—
0t @; 09 w; 0 pg2n (4.138)

If we utilize Eq. (4.138) and the potential energy expression which we have obtained, the Schrodinger
equation may be written as:

9 i‘ﬁ) .‘l( _‘Z‘Z) l(l l)iz! L[E 2g_M] =0 (4139
S (13 + (e + HE+ oot B0t 0+ —O)v-0 w9

This equation must be solved by the methods of perturbation theory, and, since the carrying out of the
solution involves large quantities of mathematical spadework which do not directly contribute to our line
broadening considerations, we shall simply give the first and second order energy results. For other informa-
tion concerning the Stark effect which we shall utilize we may treat the problem in more general terms.

The zeroth-order solution of Eq. (4.139) simply yields the unperturbed energies of the hydrogen atom.
The first-order solution yields the energy perturbation of the linear Stark effect:

3hE

EY = 222 5 (ks — k) (4.140a)
2pe

The second-order solution results in the energy perturbation of the quadratic Stark effect:

=~ - B (Z )' n* [17n? — 3 (ks — k) — 9m?® + 19] (4.140b)
1614 \ e
In Eqgs. (4.140) n = ky + ks + m is the total quantum number, while ki, ks, and m are the quantum
numbers associated with the parabolic coordinates £, 1, and ¢ respectively. We might note that ¢ corre-
sponds exactly to the v of spherical polar coordinates. This means that the quantum number m is the mag-
netic quantum number specifying angular momentum about the atomic figure axis in parabolic as well as
in polar coordinates. As a consequence, the selection rules for the m of parabolic coordinates will correspond
to those for the m of polar.
The eigenfunctions of hydrogen in parabolic coordinates will be written down at a later point when their
utilization will be required.
*See infra, Chap. 5.
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4.17. A GENERAL TREATMENT OF THE STARK EFFECT

Now let us consider the problem in a more general form. To begin with the imposition of the external
electric field, which is the Stark effect producer, will present us with a problem in perturbation theory if we
consider the case of the isolated hydrogen atom as the unperturbed problem. The perturbation introduced
will be eEr cos ¢, if, asin the last section, we take the field along the z-axis and set up the problem in spherical
polar coordinates. Let us assume our familiarity with the solution of this unperturbed problem in these
coordinates and specify the solution by y,;,,. The symbols n, I, and m we take to indicate the principal,
the orbital angular momentum, and the magnetic quantum numbers respectively, and for convenience of .
notation, we further suppose the numbers n and [ to be represented by n and the number m by j. Now a
different energy eigenvalue corresponds to each eigenfunction going with a different value of n. For a given
value of n, however, there are a set of eigenfunctions corresponding to the various possible values of j to
which set there corresponds but one energy eigenvalue, namely, E,.* This means that the energy level of
energy E, is degenerate. The perturbation, which is to be introduced, will tend to remove this degeneracy,
that is, solutions to higher order problems of the form Eqs. (2.26) will result in energy dependences on j.
This fact will require us to treat the perturbation problem in a slightly different manner from that of
Chapter 2.

In zeroth-order there are, say, i eigenfunctions which satisfy the Schrodinger equation for energy E,.
It follows then that the complete solution of the differential equation for the state under consideration is a
linear combination of these i eigenfunctions:

%’.(o) = Zeup %’.50) (4.141)
,I
This result may be substituted into Egs. (2.25):
H=H 4+ H (4.142a)
¥ni = Zca ¥ail” + el + Fn® 4. (4.142b)
)‘l
E,; = E9 + £, + éE,® + ... (4.142¢)
Egs. (4.142) are next utilized to obtain the analog of Eqs. (2.26) from Hy, = E,y, as:}
HZ oy o = B0 Z oy vl (8.1432)
2 J
( H® — En(O))' v,n(l) — 2 Cnj (En(l) - H') %;'“” (4_143},)
i
leug'l) + Ho ',’nj(z) = En(o) #’nj(z) + Euj(l) 'hu'(l) +, z Cnj’ En:'a) %5'(0) (4-1430)
I

We agree that the y,; are a complete orthonormal set. This unanimity of viewpoint allows us to
introduce the expansions:

1
n(:') = 2 Gyjny V’u'}’o ) ’ %5'2) = 2 byjny n')'('(» (4.144)

n'y ny

with the result, after slight rearrangement:

2 aﬂin'j’u]o E”(O))‘ W”,JSO) = 2 cm'(En(Jl) ‘il) Wnsg) ("l l'31”)
"Ij’ "I
z bﬂiﬂ'i' (H° E”(O))¢”,S.?) + 2 aniu'j'(H' = E;l(J'l)) 1’»;?) zcvu" Ens'z) ug"» (4.143¢")
"'jl ”’jl "[

*Concerning this magnetic quantum number sec supra, Sec. (2.5) where m = M(m ~ j).
tFor the simpler non-degenerate case see infra, Chap. 5.
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If Eq. (4.143b’) is multiplied through on the left by ¥, @ and integrated over all space, the result is:
2 o [T B — EO 0P dr = Zae [TPED - HP dr (4.1
according to Eq’t ’(4.14341). Orthonormality decrees:* ’
J30 w2 dr = bty (4.145)

Thus, if n  n’ orj # j' or if both inequalities hold, the left side of Eq. (4.145) goes to zero. If, on the
other hand, n. = n’, it is apparent that the difference E” — E/® is zero. Under any condition then:

3o / WO ED - H) P dr =0 (4.146)
i
which, according to Eq. (4.145) further reduces to:
’_2?'0,.,-' Gy EL — Hz) =0 (4.147)

by virtue of the fact that / v OEM YO dr = EP / ;l;,.f,p) D dr and where we have introduced the
matrix element:
1y = [39Hvdr
Eq. (4.147) yields a set of equations from which, in theory at least, the c,; may be obtained.
Let us consider the matrix of E," — H’;; for hydrogen:

- nlm (100) (200) (210) (11) @1-1)
(100) E® [ 0 0 0, 0
@y | o | EO  -E | 0
(210) o | —Hy' | 0
@ 0 e T o | EY | 0
@11) 0 0 0 T T 0 T T Ew
Table 4.3

First we may consider the reason for the disappearance of the various matrix elements. To begin with
we have forbiddent the appearance of thematrix elements between states of different n in obtaining Eq.

2%
(4.144). Next the angle ¢ does not appear in H’ so that integrals of the form f ™= dy will cause H'
1] L

to disappear for m # m'. Finally the presence of cos & in H' is responsible through f 6;(9)8,(9) cos o -
0

sin & d¢ for the disappearance of H' except for I' = I + 1 by virtue of the orthogonality of the associated
Legendre functions.

. [}
%3n in the Kronecker delta of definition dyy = 0 2078 %7
lforn = n

tFailure to forbid this leads to the same result, i.c., in first order levels of different n are still seprrated by the amount of
seroth-order.
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The matrix tells us several important facts about the Stark effect. To begin with we see that the linear
Stark effect has no “effect” on the energy of the ground state. Secondly, the matrix elements for m » m’
disappear. Finally, a twofold degeneracy corresponding to m = == 1 still exists in the state with n = 2.
We might remark that for n = 3 the states with m = =+ 1 have the same energy, as do the states with
m = == 2, and so on for the higher values of n.

Now let us return to Eq. (4.143b), multiply through on the left by ¥mi and integrate over all space
where we take ' = m > nandl = j’. The result is:

2 e Hpor
Gujnty = m s n'#n (4.148)
If Eq. (4.143¢) is multiplied through on the left by ¥,;” and integrated over all space the result is:
C,‘,'E,,,'(a) = ”%la,,,',",v / E,.,'(O) H W,‘.'jv(o)dr (4.149)

From Eqs. (4.148) and (4.149) we obtain:

2 ”, 'n,
@ - 2 —,—c_,,,_:—,_,__
E ( E,. o __ E‘(O)) a}'n

'f' | er cos 3 | nj")

Ecw"(n
=-F 2 ’ & (E, O —E®) (nj | er cos & | n'j") (4.150)*
j N

»'s

Eq. (4.150) tells us the second order energy of our perturbed degenerate system. We may glean a few
factors of importance from this equation. First it may be noted that this energy correction is proportional
to the square of the electric field, or a quadratic Stark effect has been obtained. Next, matrix elements of
H’ are still non-vanishing only for Al = + 1 and Am = 0. Finally, a fact which will be of some importance
later is that now the matrix elements for changes in the principal quantum number will not disappear.

4.18. PRELIMINARY APPROXIMATIONS FOR THE QUANTUM BROADENING PROBLEM

Let us return to Spitzer’s theory of the broadening of hydrogen lines by the electric ficlds of neighboring
ions.”™!™  This author began with three simplifying assumptions: ‘(1) the matrix elements of the inter-
action potential between states of different total quantum number may be neglected, and . . . the other
matrix elements may be computed on the assumption that the atom is in a homogeneous field of strength
Ze*/r . .. (2) Each collision . . . may be assumed isolated from all others. (3) The mass of the colliding
particles may be taken infinitely large.”1™

First we might point out that the “total quantum number” to which Spitser refers is the n of Eqs.
(4.140), not the principal, radial quantum number n. The two are more or less comparable, however, and,
as we may see from a comparison of Table (4.3) and Eq. (4.150), the neglect of the matrix elements for a
change in the principal quantum number infers a linear Stark effect as does Assumption (1) above. We shall
justify this in a moment.

The remainder of Assumption (1) supposes a homogeneous field E over the “boundaries™ of the atom,
or, say, over the electron orbit. We have supposed this to be the case in our considerations of the Stark
effect, and, if a field is imposed from “outside,” there can be little objection to this. Now, bowever, we are

*The alternate expression for the matriz elemeat (o |2| b) = [ Ves¥sdr is bere introduced.



4

supposing our field to be produced by an ion, and, if the separation of the hydrogen and the ion, r, is not
large compared to the average distance of the electron from the hydrogen nucleus, 7,, this approximation
surely breaks down. Thus, some lower limit R must be set on r, and Spitzer chooses this limit as R > 107,,
although at this separation “ . .. the perturbing electric force may deviate from its average value by as
much as 20 percent.”’” Now r, may have as its maximum value 3na,*/2 — a, is the radius of the first Bohr
orbit — so that R > 8.0 x 108 n? where n is the total quantum number. The exchange integrals, which
we have not mentioned, as well as quadratic Stark effects will be small for these distances as we may show
by Eqs. (4.140).
av, _E® 24n(k, — )R

Aw, E® nil7n* — 3(k — ky)* — 9m® + 19)a?

When k, — k, is set equal to /2 and m and 19 are neglected, the result is:

SR 21 (RY, g
Avy  4a'm* 16 \r,

Assumption (2) is the binary assumption which, together with the third assumption, will become
familiar ones. It is certainly obvious that the treatment of a two particle interaction is far simpler than the
treatment of a three or more particle interaction. In addition, it is rather apparent that at the lower pres-
sures the approximation should be a reasonable one by virtue of the following: The highest probability is
that the separation of a single one of the surrounding molecules from the emitter is sufficiently small to
insure that its interaction overshadows that of the remaining broadeners. It might be said that, although
Assumption (3) is reasonable for heavy particles, this will certainly not be true where the ions are electrons.

4.19. THE STATE GROWTH EQUATION FOR THE ADIABATIC APPROXIMATION

To begin with, we consider the change in the potential as adiabatic so that the quantum state of the
system will remain unchanged during a collision. Let us digress for just a moment on the subject of adiabatic
processes, since we shall encounter them continuously in our further consideration of line broadening theories.

One is accustomed to consider an adiabatic process as one in which the entropy of the system — or the
degree of disorder thereof — remains unchanged. Now if the probability that a molecule is in state X has
the value unity before and after the occurrence of some phenomenon which affects the molecule “system,”
the degree of disorder of this system remains unchanged and hence, the occurrence of the phenomenon con-
stitutes an adiabatic process. On the other hand, if the probability for state X is unity at the initiation of
the process and changes by virtue of the occurrence of this process to .6 for state X, .3 for state Y, and .1
for state Z, the degree of system disorder has changed, and in consequence, a non-adiabatic process has
occurred.

In the present adiabatic case, & two state atom with an upper state 4 and a lower state B are considered
where E, and Ejp respectively are the energy of the two states.

Since the elect-ic field is assumed directed along the s-axis of the emitting hydrogen atom, and since
this electric field is radial from the perturber to the emitter — this, of course, would only be strictly correct
for the one perturber assumed — the coordinate system will rotate with the passage of the ion so that the
s-axis is always directed toward the ion. Adiabaticity requires that this rotation occur for the following
reason. The quantum number m specifies the projection of the angular momentum on the electric field of
the ion. In order that m remain constant as required by the adiabatic hypothesis the molecule must rotate
with the changing direction of the ionic field.



(4]

In the state A the molecule has energy E,(¢) and there are no photons in the radiation field so that the
unperturbed eigenfunction for the system molecule plus field is:

]
7,9 = O ,‘%of B e (4.151a)

In the state B the molecule has energy Ep(t) and a photon of frequency »; is present in the field. The
unperturbed eigenfunction is:

20 = e P[ B0 +ria (4.151b)
If Eqs. (4.151) are substituted into:
BY = oy (4.152)
the time dependent form of the Schrodinger equation, the more familiar form of this equation results:
HY,® = E(() 44 @) (4.153a)
HG® = (Es(®) + h») 1,2() (4.153b)°
In Eqgs. (4.153) tis a parameter, and E(t) and Ep(¢) are the molecular level energies as perturbed by the

linear Stark effect of the ionic field.

We now wish to introduce the molecule-field interactiont and ascertain the solution to Eq. (4.152)
under the influence of this perturbation. The result of this perturbation will be to smear out the probability
of finding the molecule-field system in state ¥,?, ¥, @ , %, etc. This prognostication leads us toassume
a solution of the perturbed problem of the form:

Vo = a(t) ¥, + z bis) ¥ (4.154a)

Eq. (4.153) tells us that, if the system is initially unperturbed and subsequently perturbed for a time ¢,
the probability that the system is in the state ¥, is | a(¢) |% in the state ¥, is | b;(z) |*, and s0 on. Thus,
these coefficients may well be dubbed “state growth coefficients,” for this they are. Finally then, the solu.
tion of the Schrodinger equation amounts to nothing more nor less than the procuring of these coefficients.

a(t) exp (% f EA(t)dt)
0

write Eq. (4.152a) in the equivalent form:
‘ i
vo = a@eld 9% @ | Z 5@ ) e iy @ (4.154b)

Since

¢
Y= e P nnd‘ b) exp[,i// (Es(t) + hr.-)dt] |' = | B(®) |*, we prefer to
0

If the molecule-field interaction Hamiltonian is taken as H’, Eq. (4.154b) may be substituted into
Eq. (4.152) with the result:

S, [ (Bp+im)d )
f 7O = ibdo7f Lty @

a(H® + He¥ Sran ¥, @ 4+ 2 b,(H* + H')e
{
‘ $ N
_E, “;f oy %, f u‘_gﬁlv.“" + Wi )J m+»oawum
a‘ 3

*For the Hamiltonian weed here see supra Eq. (3.57D).
1 See supre Chap. 8.
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K2 ‘
= 2 (B + Wb e “plamiwos ""?"se"f Gortot g (4.155)

Certain terms drop out, since H'V¥, = ih-:-;\ll,. In order to determine a(t), let us then multiply
through on the left by ¥, and integrate over all space to obtain:
‘ i n ‘
P L b.-H',,'eﬂ"“ - i;(de"f I L (4.156)

According to Egs. (3.61a) and (3.63a) the diagonal matrix elements, such as H’,,, of the field-molecule
interaction disappear. Eq. (4.156) then becomes:

i} = E,@a®) + Z Habi ) (4.157)
The multiplication of Eq. (4.155) by ¥, in like manner results in:
ifb; = {Ep (1) + hwi}bi(t) + Hiea(®) (4.157b)

Eqgs. (4.157) are the so-called “state growth equations,” since they tell us the manner in which the state
probabilities | a(¢) |* and | b;(¢) |* change with time.

4.20. THE STARK BROADENED SPECTRAL LINE FOR THE ADIABATIC CASE

Let us assume that at time ¢ = 0, the atom is in the state 4 with no radiation present in the field.
Thus, | a(0) [ is unity, and the | b;(0) [* are zero. These requirements and Eq. (4.157a) are satisfied by:

at) = =" °!p{ - } j E(r)d } (4.158)
S

Now let us consider Eq. (4.157b). From the fact that the right side of this equation is a sum of two
terms we may infer that b,(t) is a product of two functions. Hence:
bi(e) = f(0)g(®) (4.159)
From Egs. (4.157b) and (4.159) we obtain:

PO) ‘%‘_) - sv{z,,(z) + hv.-}g(t)j(t) (4.160a)
a0 _ o ol (4.161a)
J@® = Hya(s) W

The solution of Eq. (4.160a) is: ‘
£ = exp { ~2wivg ~ % / E.(r)af} (4.160b)
0

If we now substitute Eqs. (4.158) and (4.160b) into Eq. (4.161a) we may solve the resulting equation
to obtain:

] r
go) = -%"3 j e~V"7dr OXP{zﬂ";’l‘ + }‘-{/ (Eplr) — EA(’))"'} (4.161b)
0



7"

Eqgs. (4.160b) and (4.161b) may now be substituted into Eq. (4.159) to yield:
r
b(t) = — 'H7“‘exp { —2wivg — /‘{ _/ Eg(f)d’f}.
7o

. T
[ertman cxp {awivt + H [t ~ Eatnar} (4162)
0

0

By time ¢ = ¢ the emitter will certainly be in the ground state, and a photon of frequency »; will be
in the field. The intensity distribution in the spectral line is surely given by | b,y (<) [* since this will
represent the probabilities for the appearance of these various frequencies. If we call I’(») the intensity
of the frequency » there results:

© T :
re) = %%e)_'] / e~VT7Tgr exp{2ﬂ'v,-'l‘ + )} / (Eg(r) — EA(f))df}'
0 0

(4.163)

If we let E,, and Ep, be the unperturbed energies of te 4 and B states respectively, we may utilise
the equations:

Bale) = {E—Ac) - E..}P( (8.1640)
8a() = {E;(:) - Enm }lll (4.164b)
x = 2x(y — wup) (4.164¢)

to transform Eq. (4.163) to:

© T
Ix) = 5‘% f J+HDT gy exp{ i f Balr) - Aa(f))‘f} : (4165)
0 0
where I(x)dx over all x has been normalized to unity.
From Eq. (4.140a):
40 = "g’i"-‘s (ks — ki) (4.166)
me

We have supposed the field F to be produced by an ion of, say, charge Ze at distance r(t). We assume
straight paths for the perturbing ions, and we now let ¢ be the ionic velocity, R the distance of closest
approach and & the time of closest approach. The results:

Ze
E=0 (4.167a)
@) = R* + o(t - 0)* (4.167b)
8a() = 850) = 3/(': m—r (4.16%)
g/ = 3hgZ/2m = 1.13¢Z (4.167d)

8 = nalhua — k) = nalap — bup) (4.1676)



8

Eqs. (4.167c) may be integrated as follows:
T
[ 184 = 50 dr = F A (T8 (4.168)
t

Now surely if we allow T in Eq. (4.168) to have the limits — © and + ®, we will cbtain the total phase
shift of the emitted radiation due to a collision. The result of taking these limits is, of course, a shift of

x T where: T = 1755 (4.169)
It may be noted that in Eq. (4.165) we deeire the limits 0 and T on the integral in the exponential,
whereas, we have taken the limits #, and T in Eq. (4.168). A reasonable approximation is to assume that
between 0 and ¢, one half of our total phase shift will occur so that if we subtract §2T from Eq. (4.168) we
shall obtain the desired result for Eq. (4.165). Let us now substitute Eq. (4.168) into Eq. (4.165) and inte-
grate by parts to obtain: ‘

T 1 F { . - "(T - ) | e

Ix) = — 2 |lgia+iDT [—T 1_]}

® = % @Tam l {" i My § 4
®

—pirr T 1 x+HDT, [ —iT tan -1 WT — &) “)]JTI’ 4.170a

TR 1+v'_(1'—:.)"‘ il A R e
° R
®

Since: g+inT exp[—iT tan™! LTR;—-E'L)] =e‘“’°e‘""e""-;' —e” =0 -1

0
Eq. (4.170a) becomes:

AT ) I
aTr

I(x)nr —-———-—l '+%e-“"/ R

2 4.170b)
2z + a0Y| (1700}

(T — &)
R

Now let us take a factor exp (x + § iT") & out of the integral and partially complete the absolute square
to obtain:

1+

o 5+ exp[ —iTtan? Z !J,
M) = 1+ ™ f T (4.170¢)

where T = r + &, and where, “ ... unless x is comparable with I', the process of averaging over t will
remove the cross product when the square of the absolute value is taken in. . . ."® Eq. (4.170b). Now let
us extend the lower limit to — o , — this will have little effect — assume x >> I and neglect the damping

factor under the integral to yield:

+'o"'exp[—i'l‘un"'—'] ‘

r I R

o=yt f & w170)
2eat Rl T o2 |
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We now let:
1 - ‘11;- (4.171a)
t= ’;’5 (4.171b)
and integrate Eq. (4.170d) over & to obtain, if (T, §) = I—'; is the number of collisions per second:
r AT, §) e s }
= {14 2228 qere 4.1
I(x) 3 “,{ + T Tt (&) (4.172)
! ‘ +‘ei'(f¢ —v tan-ty)

-
Let us first consider the result of the two limiting cases (1) ¢ very large and (2) ¢ approaches zero.
In order to consider Case (1) let us integrate Eq. (4.173) by parts:
-7 tn'luel'fﬂ

Nl st iTtan"l v
T [ e T
b = lim{* - / -——-—-—-——-du} =0
'_':fr(f) Jimm { T + : T
From this result it is apparent that f,({) goes to zero for sufficiently large £, and, as a result, the line

profile is independent of the number of collisions for x large enough. For Case (2) straight integration for
§ = 0 yields Tfy(0) = 2 lin%f. Thus T%,*(0) = 4 uin"'%-' and the average value of this expression is, of
course, two. If Q,,, is the total number of collisions for which the phase shift is greater than unityor T > 1/x
as required by the Weisskoff theory, we obtain, by neglecting the unity in Eq. (4.172), the Weisskoff line
shape for ¢ small.

= T |
I = 2L (4.174)

These are the two limiting results for Eq. (4.172), but Eq. (4.173) may be integrated, if rather labori-
ously. To begin with:
e~ #57% = cos (tan~'u) — i sin (tan™'u)=
- . 1 - iu)
= CO08 [tan lu] [ 1 - ml = m (4.175)

Substituting Eq. (4.175) into Eq. (4.173) and expanding (1 — iu)™ according to the binomial theorem
we obtain:

+o
it (-
ft(f)'/mdu[l - iTu +’1T——%Li“l' ...+ (—au)'] (4.176)

Now since the first integral in Eq. (4.176) is an even function we may surely write:
[

4o
P : cos ut
fﬂ'@?‘m“"’ﬁm“‘



Basset has shown that:*

23)' ‘
Ks) =10 'H;)( ») / (:f‘:';;f‘;, (4.177)

where K;(x3) is the Bessel function of the second kind. If we let gT'(¢) be the first integral in Eq. (4.176),
we obtain:

gre = 1,—@-:"-11)5“‘*” 1a+n(E) (4.177b)
Eq. (4.176) then becomes:
Fo(® = g:l®) =F1"—4;;T<s)+"“qr L & FEOF. 4.178)

If, in the expression for the hypergeometric function F(a,b,c,3) we set bz = x and allow b to approach
infinity, we obtain the confluent hypergeometric function (series):*®

F" ’ = 1 2 —-—————-—-a(a+1)
1F1(a, v, %) +73+2'7(‘y+1)x’+

Now if T is an even positive integer, we may use an expression due to Oltramare: ! %

f cosxu_ . _ (-D)"'x | "l e ]
(u’+z’)“ 27—l Q@ +p)tdaa

to obtain for Eq. (4.176).

fa(®) = 2x (=1)* e e (R — o, 2, 2p) (4.179)
An inspection of Eq. (4.176) for f1(£) is sufficient to show that the integral of fr*(£€) over ¢is independent
of 7. Now surely:

/ S (O)dE = / / f L dudu'd

' A+ u) Q+u? ¢ 4180
Let us write out the Fourier transform of f(x) = fy*(¢) as follows:
+o0
fx) = % / f f(£)e*E=9 didg (4.181)
1

If in Eq. (4.180) we take f(u’) = , then in essence we have, from Eq. (4.180), 2xf(u)

(A+u?) (1+u?)
integrated over u. Thus, Eq (4.180) becomes:

+o

/fr’(e)df - / 2nf(u)du = 2 (6.182)

du
—— = 3
(1 + w)
This then will essennally be a nonm.hnng factor for our spectral line.

*See also reference 215.
t We ocould probably also use a relation obtained by Malmstén!®

~ Farigl@0)® + #Cy (8+1) @a)'~ + Gy (a+ 1)(n+2) (26)*2 + ... ] for the same rosult.

f (1 +z.)n+l

p——y
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Fig. (4.7) gives the results of Spitzer’s calculations for several values of T * xy,, is nothing more than
q// R'. The limiting value for T = ¢ corresponds, of course, to zero velocity according to Eq. (4.169).
Thus, this value of T should yield the line shape as given by the Statistical theory.* Spitzer abtains the
limiting value of Tfy?(¢) from the Statistical theory rather than from Eq. (4.173) going back to Eq. (4.167b)

to do so. The result is:
2x(x — 1)V? (4.183)

E‘Tfr’(a = T
which together with Eq. (4.172) will give the inverse 3/2 dependence on x as predicted by the Statistical

theory.
In obtaining Eq. (4.172) we have assumed that the change in the potential may be considered adiabatic,
and we shall now proceed to demonstrate that the breakdown of the adiabatic hypothesis results in a change

in fr(£).

421. THE EFFECT OF A NON-ADIABATIC ASSUMPTION

We may recall that the interaction between the radiation field and the atom resulted in the appearance,
of T, and, since we have assumed x > 4 T' at any rate, we neglect, with Spitser, this interaction. For this
case:"’

OV :
% H(e)¥ (4.184)
where
¥ = 2 a,(0) V() (4.184b)

We substitute Eq. (4.184b) into Eq. (4.184a), multiply through on the left by v.(8), and integrate over
all space to obtain

. . E, ()
—G, =3 a,(t) + Z k,,a,(0) (4.185a)
VB
since: H(t)y,(t) = E,(s)¥,(¢) instantaneously,
where:
k() = f v.(0) '-’igf—')dr (4.185b)

We may obtain k,, in slightly different form by first differentiating Eq. (4.156) to obtain:
(2 - %)y, = [ B0 - HO %

ot at (4.186e)
If Eq. (4.186a) is multiplied through on the left by ¥,(t) and integrated over all space, the result is:
. .
(%) - 1B - BOlke mr (4.106b)

where the E,(¢) may be obtained due to the Hermitian** quality of H(s), that is H,, = H,,. Since k,, = 0,
Eq. (4.186D) is sufficient.

*See infra Chap. 5.
- t The derivation carried out here was first performed in an ideatical fashion for this case by Guttinger.™

+ o
** We may recall that an Hermitian matrix is sclf adjoint, thatis, [[4] = [|A || =4 ]. .



Eq. (4.167a) gives the field, and we assume that the jon is moving in the y,3, plane where the subscript
e refers to the electronic coordinates of the emitter. In addition, the ion is supposed moving parallel to the
Y axis. For simplicity, let us consider Fig. (4.8).

Iuis the electric dipole moment of the molecule, the interaction is #-E = u,E, + p,Ey+ p,E,. Then

from Fig. (4.8), the time dependent portion of this Hamiltonianis y,E, = ~ l‘z—é—

It is further apparent from the figure that:
dr @ — t)
P =R+ ot — &)? - =
( ) dt r (4.187a)
since R is a constant ¢. An inertial Y-axis is taken as shown in Fig. (4.8) and an inertial Z-axis is taken as
corresponding to R. A study of the figure tells us that.
Y, =23,8nd + y,cos &
Z, = z,co8 ¢ —~ y,sin ¢
Differentiation of these relations, multiplication of the first by sin & and the second by cos ¢, and addi-
tion of the resulting expressions yields:

b t: _— e T
) de r r
so that: 9z, _ yoR (4.187b)
ot r

Utilizing Eqs. (4.187a) and (4.187b) we may find:
QE=_Zé6 z, _2Zze*dr & 9z,

ot ot rt P d r o

Zev ,
=70 { 2z,0(t — &) — y R } (4.187¢)

and we need only the y,R term since we may recall that for states of the same total quantum number, the
matrix of 3, is diagonal.
From Eq. (4.184a):

Wl
H > = Eu = HOW,
so that, when we multiply through on the left by y,, and integrate over all space, we obtain:

Ze's,,

E, "(H(‘))u"‘ #:E)y = -';'(T) (4.188)

Combining Eqs. (4.186b), (4.187), and (4.188) we obtain
- R e 4.189
R r(t) S — %00 (4.169)

Now letting,

{s*(t — &)* + R?} dw = oRds (4.190n)
w = tan~! T8 — %) (4.190b)

R
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in Eq. (4.185a), and substituting for r*(¢) from Eq. {4.188) we obtain:
9 4 itya, +3 L g, =0 (4.191a)
dw r78 Zpp—2ay
where:
_ 2, (4.191b)

T = W"

Eq. (4.191a) for the coefficients a may be solved for any specific case given a solver with sufficient time
and patience. Spitzer’s time and patience extended through the first excited state of hydrogen, and we
shall now consider his example.

In obtaining Table (4.3) we found Am = 0 since, in our operator, ¢ did not occur due to the lone pres-
ence of z. In those cases in which our operator contains y or x, however, ¢ will appear and we find, for
example, since y = rsin ¢ sin ¢:

2r 2r
/e“"’" sin ¢ €% dp = _l_f [emim=m'=1) _ g=itm-m'+1) g,
0 2 0
Thus, the matrix elements of y fail to disappear only for Am = 1.
Let us write down the deferred eigenfunctions of hydrogen in parabolic coordinates:

Vibm = 72; ui (&) ug (n) €™ (4.192a)
x
4"1! —do _dm _Km+1) rm

u(n) = o+ (m_,)s/ze L L +m (en) (4.192b)
v,tg—’ ~jef pim _f(m+1) rm

uy(§) = me 7 e Liim(e®) (4.192¢)

Our first excited state has the possible functions ¥y99, Y00 —1, Y010, and ¥go; which we may designate asy,,

V3, ¥4 and ¥,. The matrix elements of z will be the matrix elements of kl ; ¢ according to Eq. (4.138).

As an example of the type of relation which we desire we may consider the following:

(——g—f)u =3 = 214?’- f e ey [Iax"'(eﬂ)]2 dy f ug’ (¢)d¢ / do — 214; u’® () d¢

el orde fao= - [£ [emalts @Pa [wod [

- 21 / u,? (n)dn _/ e o [L° (D] dE ] = -y = - (—"—-—-e-)
g 2 44
In this manner we arrive at the relations:
u=—3u; m=m=0

Y1 FYn =N = 00 = Yy = -4



Egs. (4.169) and (4.167) tell us that for the case where the lower state involved in a transition is unper-
turbed — which the ground state certainly is — T,, = T. Using this fact together with Eq. (4.193) in
Eq. (4.191) we obtain:

.:lwl + iTa; + % (a3 + a3 + 4a) = 0 (4.1944)*
9% s —a) =0 (4.194b)
dw
By -a)=0 (4194¢)
dw
% = iTag — 3o, + a; + a5) = 0 (4.194d)

In the usual manner we may assume a(t) = a(t) exp(i ¢ w) to obtain the secular determinant for the a;:

il +7) % 3 }

~3 i 0 }

_3 0 i } 0
—1 -3 ~3 o — 1)

whose solution is ¢ = 0, 0, (12 + 'l%)” 2, If the coefficients of 4, in Eq. (4.194a) and g, in Eq. (4.194d)
were zero the solution would be ¢ = 0, 0, & (T + 1)/%. The a; themselves could now be found.

We shall defer the proof until Chapter 6, but Weisskopf'® had attempted to show that the line profile
is given by the absolute square of the Fourier transform of the state function. (There are certainly objec-
tions to this proof, but since one of them applies to Spitzer’s approach as well, these objections can reason-
ably be overlooked here.) Of these state functions it is quite obvious we shall have three, one corresponding
to ¢ = 0, the second given by:

a(t) = a(to) exp [iow] = a(ty) exp {i ('I‘2 + —::67- )l/2 tan™! _”L'._I;_i)} (4.195)
and the third the complex conjugate of the second. Thus the lowest hydrogen line has been split into three
components.

If we utilize Weisskopf’s assertion, a comparison of Eq. (4.195) with Eq. (4.170d) tells us that the line
profile will still be given by Eq. (4.172) where now f,(¢) is replaced by f,(£). This then is essentially the
effect of the breakdown of the adiabatic hypothesis on the profile of the lowest hydrogen line.

*Spitser leaves a, out of this equation, although Eq. (4.191a) would appear to require it:
Yie =i
Sy - lnc‘ —%Hi - ln“ b
t The principal objection is the use of rectilinear motion in a central force problem.




4.22. THE BORN APPROXIMATION FOR THE STARK BROADENING PROBLEM

Now let us take as our Hamiltonian:
H,+H+V+H=H (4.196)

where H,, is the unperturbed atomic Hamiltonian, H; the unperturbed field Hamiltonian, H’ the atom-field
interaction, and V the ionic field Hamiltonian. We suppose there to be two upper states 4, and A; of equal
unperturbed energy E,; and two lower states B, and B; of equal unperturbed energy Ep,. We let T be the
probability coefficient for a transition from 4, to B; per unit time.

We assume that our perturbed eigenfunction may be expanded in terms of the four unperturbed eigen-
functions of the states which we are considering as:*

¥ = a1 + aws + bty +bavs = Zei; (4.197)

Although it will prove a somewhat laborious procedure, let us, for clarity’s sake, work out the equation
for @, specifically.

To begin with Eqs. (3.57b), (3.57b’), and (3.37¢’) tell us our non-relativistic Hamiltonian for radiation
plus particles. To this, of course, we must needs add H'.

Into the equation:

L a—¢=
- m

we substitute (neglecting the second term in Eq. (3.57b)) Eqs. (4.196) and (4.197) to obtain:
ih (E_ésb’/; + 2?0;']/.') = Z c;Hy; (4.198a)

In the usual manner we multiply through on the left by ¥, and integrate over all space. First, it is
apparent from Eq. (3.57b) that the contributions of H; will disappear either due to eigenfunction orthogonal-
ity or due to the fact that in state a, we assume no photons in the field so that all n in Znh», are sero. Sec-

¢

ondly the H, and the E, diagonal term will obviously disappear. We are thus left with, after orthogonality

has relieved us of several terms of the form ¢,¥; and c;¥; (i # 1):
wl.h = ailly’ + asHiy' + bHy' + bsHi' + ZeV (4.198b)

Now b V1; and bs¥y, disappear due to the fact that the matrix elements of the ionic field disappear for
changes in the total quantum number. Finally Eq. (3.63a) tells us that a; H,,’ and a,H\s’ disappear so that
Eq. (4.198b) becomes: ]

ifa, = a\V + asVa + by + bHy/ (4.198¢)

Let us notice that Eq. (4.158) infers a value —} i’f‘a(t) for the sum on the right of Eq. (4.157a). In

essence we again make the same assumption — byHy' + byHy’ corresponds to the sum in question — to

obtain:
ijfa, = ’AAI (e + }KA (thay — % iﬁ"a: (4.198d)

where we have let XAA,(t) be the diagonal and XK 4(0) the off-diagonal matrix elements of ¥ as in Eqs. (4.164).
In like manner we let /AA,(t)be the other diagonal matrix element in the upper state, /Am(t) and ﬂ,.(t)
the diagonal matrix elements of the lower state, and /K,(C) the off-diagonal matrix elements of the lower

*In doing this we tacitly infer that only four states exist.
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state. Thus, we obtain for a,, and analogously for the time derivatins 8 of the other state growth coeflicients,
the following:

& = —idn(a; — iK(Oay — man, (4.199a)
by, = —i(x + Ap(®))by, — "_If_s_('_)M - iH' g (4.199b)
by = —i(x + Am(®)by ~ i Kpih3 by (4.199¢)

where x is still given by Eq. (4.164¢).
From Eq. (4.199a) it is apparent that a,(¢) will be of the form:
ar(t) = e 17O hy(e) (4.200a)
and differentiation shows that Eq. (4.199a) is satisfied if we take forl), .(t) the following:

W) = exp (=i f 8 dr) { W — i flaDan(D)
. exp (i jo‘r Aq(r)dr — 3rT)dT) (4.200b)*

Egs. (4.200) surely satisfy the boundary condition a,(0) = (0,
From Eqs. (4.199)b) and (4.199¢) there then results:

by(®) = — ipi®) fp;(T)d’l’ {Hyp,' e " hy(T)}t — Kg(T)by(T)} (4.201a)
by(t) = — ii?(ﬁoj pa(T) dT Kg(T) by (T) (4.201b)
where: pi(e) = exp {ine + i of‘ Apy(7)dr} (4.201c)
pat) = exp {ixt + i of Ap(r)dr) (4.2014)

We shall not go through the succeeding stepe in detail, but merelyics:etch them in. Spitzer next assumed,
say, by, (t) as a “‘series of successive approximations,”

bu® = by, () + b,® © + b,® (I+H .. . (4.202)
b,7(¢) is obtained from Eq. (4.201a) by neglecting K and inyrygrating by parts. This result is sub.

stituted into Eq. (4.201b) to obtain by, (t), and this latter result finaljw utilized to find b,?(¢). In addition
2,0, b,, and by,? are shown to vanish. There ultimately results:

' T - lHABlI " ! ) ¢ ?
b (o | Gt = L2 by s 14 femar |

- 2 R| ztwdr f I(Tydr]} + [bf pilleQeFTdT {‘5—'; + iAmhl} :
+ lfpa(T)e""dTKahl l’] (4.203a)

where: I(e) = Kg@®)ps(O)ps(8) (4.203b)
It can be shown that the double integral cancels the term immistisely preceding it in Eq. (4.203a).
In addition, the changes in b, and A, during a collision are neglected so it mt these quantities are taken outside

*Spitser gives -+I'T instead of —{I'T, but this would not appear to cancel v’ 2 esp (~4['T) in o when the second term
on the right of Eq. (4.199a) is being obtained.

»®
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the integral signs and the mean square of each equated to unity. Finally exp (—~4I'T) is taken outside the
integral and « is assumed >> § I'. Again we recall that Eq. (4.203a) should give the intensity distribution.
Thus:

I(x) = .5_:‘;’_ [1+ exp(—T&) { | f T (Az ~ Ag)dT |2

+ |‘°f &TK, AT | + |bf *TKpdT |2} ] (4.204)

The integrals of Ap, and Ap; may be noted to have disappeared, and this is by virtue of their first expected
appearance in fourth order. Use has also been made of the fact that the phases of 5, and h, are arbitrary
which would lead to the disappearance of their cross product terms in the main (occurrence with equal
probability of positive and negative signs).

Now we take the z, axis as parallel to the direction of rectilinear motion of the perturbing ion and the
¥.3, plane as the plane of perturber motion. If, as usual, ¢ is the angle between the distance of closest
broadener approach and the instantaneous emitter-broadener separation, then the z, component of the field
produced by the perturbing ion will be given.by E sin ¢ and the y, component by E cos 4. Under these
conditions Eqe. (4.167) tell us that the diagonal matrix elements of the ionic field yield:

Au(T) — Ap(T) = ¢ %’

On the other hand the matrix of z, is diagonal. Thus, we should expect the contributions to the off-diagonal
elements of the ionic field, K, and K5 to arise from the matrix of y, alone so that, if we let K, be some con-
stant the off-diagonal element K, will be given by K, cos 9/Mr. According to the conventions introduced:

sin ¢ = (T — t) ;co8 & = R (4.205)
r r
so that from Eqa. (4.167): N
¢ ity udu
/e"T(A.u - ABl)dT = T/et (—1——}.:—“;)’——/; (4.206‘)
0 -—®
[ Ko [ du
T — A séu
./e KAdT —ﬁ{-;,_/e W (4-2%]))

0 -

Integrals of the form Eqs. (4.206) have already been quite handily disposed of in Eq. (4.176) and subse-
quent, and when the result of such disposition is substituted into Eq. (4.204) the result:

=T exp (— | Ki + Kp* s ] }
160 = 2 1+ doxp (-1 & [rkice + o Ki® (4207
It appears reasonably evident that when the y, and s, axes are interchanged, the roles of the K’s and
the A’s will be interchanged resulting in the interchange of K, and K;%. ‘““When J(x) is summed over all
possible components of a particular hydrogen line n — weighting J(x) for each component by the oscillator
strength* of that component — the result must clearly be independent of the choice of axes.” This appears
physically sensible, and it is to be admitted that, if such is the case, the weighted sum over T must equal
the weighted sum over K,? and Kp*in Eq. (4.207). With the understanding then that the sum in question

*See Appendix VII for a discussion of Oscillator Strengths.
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is to be taken, it is legitimate to replace (K4! + Kj*)/M*R'?* by T2 If we again specify the aumber of colli-
sions as in Eq. (4.172), we obtain this latter equation for Eq. (4.207) where now fy(£) is replaced by:

S () = 28 (K29 + K2(®)I'? (4.208)
N(®) = 2E[Ki(§) = Ko(§)] (4.209)

so that we see that f;"?(£) is nothing more nor less than the average of f,*(¢) over plus and minus values.

We may now draw some conclusions which will tend to show that which we have been attempting to
prove, namely, “ . . . the change in the atomic wave functions becomes appreciable and the Born approxima-
tion becomes invalid in the same region as that in which the adiabatic approach becomes approximately
valid. . . ™7

The replacement of f1(¢) by f,’(£) in Eq. (4.172) is somewhat similar to the replacementby f,(£) earlier.
Now the change in f,({) as T goes from one to zero is small. On the other hand T is of the order of 2 KB//vR
whlch in turn is approximately equal to the square of the time integral of Kp(t). This latter quantity tells
f_,us approximately the probability of the molecule changing its state from B, to By, i.e., of invalidating the
Born approximation. This rather tenuous line of reasoning leads us to the conclusion that as T gets large
enough to allow the use of the adiabatic approximation as a good assumption, the Born approximation is no
longer valid.

From Eq. (4.179):

4.23. REVIEW OF THE QUANTUM STARK BROADENING THEORY

In the last few sections then we have (1) considered the effect on a hydrogen spectral line of an adiabatic
collision of specific optical collision diameter and perturber velocity to obtain Eq. (4.172) for the intensity
distribution in the broadened line, (2) considered the deviations from this adiabatic hypothesis of (1) for the
specific case of the first Lyman lines and found that fy(¢) must be replaced by f,(¢) to account for the non-.
adiabaticity, and (3) utilized what corresponded to the Born approximation to obtain a line shape (as given
by Eq. (4.207)) and in this derivation the transitions considered were more general than (2) since they could
take place between any two perturbed levels. In toto then (2) and (3) have indicated the necessity of

replacing Eq. (4.172) by:
ﬂ(T £) rar s (4.210a)
I(=) = 2n,{1 + = Tfx (E)}
where: d=14+1 (4.210b)
and the remainder of the symbols are defined, as before, by Eqs. (4.167), (4.169), aud (4.171).

The problem which remains then is one of integrating over all values of T and ¢, that is, all values of
v and p, the distance of closest approach in order to obtain a comprehensive picture of the intensity distribu.
tion in the spectral line.

4.24. INCLUSION OF DIFFERENT TYPES OF COLLISIONS

In order to accomplish this integration, we first suppose Q,,.(p,v)dpdv to be the number of times per
second (essentially a probability) that a hydrogen atom undergoes an optical collision of diameter between
p and p + dp with an ion of mass M, charge Z.e and having a relative velocity between v and v + dv.
Then an integration of Eq. (4.210a) over p and v together with a summation over m, the types of ions, will
yield the expression desired.

I(x) = __{ 1+ 1 2 / dv f Q.(p.v)T'f.'(G)dp} 4.211)



The upper limit of integration over the collision diameter is simply given by:

4 1
3TN
where IV has its usual meaning. This upper limit of p amountstoa ** . . . consideration of successive, isolated,
single encounters. ...”"" and indicates that collisions of greater diameter than the average molecular
separation will tend to be “completely screened.” Of course, this means the ignoration of distant encounters
which, in connection with the Weisskopf theory, we shall see in Chapter 6 means loes of any line shift.
Although Spitzer was naturally well aware of the fallacy in considering the lower limit zero as meaningful,
he thought that it was a ‘. . . better procedure . . . to include an admittedly inaccurate value for the con-
tribution from these close encounters rather than to neglect them entirely.””'’ The extension of the limit
to zero actually makes very little difference.

For the distribution of velocities a Maxwell-Boltzmann distribution was assumed, and for the optical
collision diameter — distance of closest approach — the simple probability 2xpvV,, was assumed so that:

Qo) = 2wpoN) (dB2x Y2 exp [— 102 (4.212a)
where I, = L _Mnmu
2kT M,,+my (4.212b)

with my the hydrogen atom mass.
When Eq. (4.212a) is substituted into Eq. (4.211) ¢ is reintroduced, and u is substituted for ,,¢?, there
results:

T f 472 «—= N, qmalz p
@0,= s\ + 2,.’ i 1 Ha) (4.213a)
b ’/l/‘hui
— —U ' 2 df
where: Hp,(x) = [e"du| [2(§) — (4.213b)
0 i £
Y = q”'lmx . Ty o= qmlm,/2 (4 2130)
1= K ’ T = 7— .
s
d finally: et 2 4213d
and anatys 7= ug (4.213d)

from Eq. (4.210b). We might note that the quantity gm/Kis the Stark shift which results from placing a
charge Z,.e unit distance from a hydrogen atom. We shall have more to say about v, and v, later.

The main problem which Spitzer faced in carrying the theory forward to completion from this point
was the evaluation of the integral occurring in Eq. (4.213b). The difficulty arising here is largely due to the
fact that f,(£) (as we may recall from Eq. (4.179)) has only been evaluated for integral values of Tand hence o,
Spitzer avoids the difficulty presented by this situation by taking, for x/x,,,, less than 1/16:

i) 1<e<15
L) 15<e<3

i) 3<e<5 (4.214a)
Jo(]) S5 <o

fv (&) =

and for x/x,,, greater than 1/16:

fo () =f. (0) (4.214b)
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We shall not consider the intervening steps in detail but simply give the solution as:

H,(x) = 4in %’- — 233 + 61y + 6.7 ;:3 (4.215)
] ]

which is accurate to within ten percent for v, less than v5/10 and v, less than 0.2. The asymptotic value
of H,(x) for large values of v, is apparent from this equation. For x/xp,, less than 1/16 this asymptotic
result holds for H,,(x). Finally with v, large (v, still assumed small) H,,(x) is given by H,,’(x) where:

1
H,'(x) = Un;- — 3.02 4 61, (4.216)
3
These then are the values of H,,(x) which are to be utilized in Eq. (4.213a) in order to obtain the intensity
distribution for one component of the hydrogen line. Since we are desirous of obtaining the intensity dis-
tribution in an actual observed line, we now sum contributions of the form Eq. (4.213a) from the various
components weighted by the oscillator strengths of the components concerned. The result is:

1 '1/2
I(x) = 2—;,—{4"3 Tj ¢+ 4—Tx, iy Rl Nougnit v (H'j(x) ~ mmj(x))} (4.217)
where the ¢; are the normalized oecillator strengths:
=i |
®j zf; (4.218)
J

This is the desired solution, and let us now consider a few of the ramifications of it, as well as the restric-
tions and approximations involved in it.

4.25. APPROXIMATIONS IN THE QUANTUM STARK BROADENING THEORY

The two parameters v, and v; can tell us a good deal about the reduction of the equations for line shape
obtained here to those of the Statistical and Interruption theory. We first consider v,. For anion with the most
probably relative velocity, I4 13 o = 1. x/xp0. Now then, if v, is small, the parameter T will be greater
than one only for x/xy,, small. Then, as we have already demonstrated in connection with Eq. (4.173),

J- (8) = —————2 Sinc(!;)

and from Eq. (4.210a) we obtain the Interruption theory shape as was obtained in Eq. (4.174). On the other
hand, if v, is large, T is large, and ergo, Eq. (4.183) and the Statistical theory again. A similar line of reasoning
leads to the reduction to the Statistical theory for large v,.

Before continuing, let us remark that Holtsmark’s 8 is essentially equivalent to x/xp, for p equal to s.
This will now be useful in certain comparisons which are to be made with the Holtsmark theory. In order
to make these comparisons Spitzer first shifted from I(x) to W(8) by the rather straightforward relation:

W(g)dg = I(x) dx (4.219a)
where now:
B — xs’h Y1
=" =11 (4.219b)

q et
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When Eq. (4.219a) is multiplied by 8* and the indicated substitutions made, there results, according
to Eq. (4.213a) and the relation between s and N:

BW () = 21(x) 1’2'[= 1%; 1’-&"%7%‘ (4.220)

where the first term in Eq. (4.213a) has been assumed negligible and the right side of the equation has been
multiplied by two for agreement with the Statistical theory. Fig. (4.9) gives the curves of log 8*7(8) vs.
log B for several values of the parameter. We may note that for the case 73 =  (the solid line) Verweij’s
calculation!®® based on Holtsmark’s earlier work has been used, since the present theory reduces to this
Statistical theory for this situation, as we have seen.

Next Eq. (4.174) may be considered. For the ©;,, which appears in this equation, we substitute the
integral of Eq. (4.212a) over p from zero to o’ and subsequently integrate over all values of v with the result:

2 2 w¢Vl,. N,,
I (x) = v; 2 q,
so that, according to Eq. (4.220):

- N, 4.221
ﬁ’W(ﬂ)‘=3\,1rZZ;T' ( )

The horizontal lines in Fig. (4.9) represent the Interruption result — the oft-called Weisskopf result —
for several values of v5. The actual asymptotic result for 82 (8), which one might expect to agree with the
Interruption result, agrees with Eq. (4.221) only for v: = 0.047. This is another demonstration of the error
involved in the Interruption theory’s failure to include the effect of distant collisions and nonadiabaticity.
We mention this fact with no special emphasis, since we shall go into a much more detailed consideration of
these facets of the Interruption theory in Chapter 6.

One other rather obvious point seems worthy of mention in connection with Fig. (4.9). Eq. (4.213¢)
tells us that v, is directly proportional to the density, since it is inversely proportional to the mean molecular
separation which is in turn inversely proportional to the particle density. The result is that as the density
increases the theory tends toward the Statistical theory, and conversely, as the pressure decreases the theory
tends toward the Interruption theory. This may be seen directly from Fig. (4.9). These aze facts which we
shall encounter on several subsequent occasions, but this seems a particularly simple way to demonstrate
these facts about the two types of theories. One more item of interest may be garnered from a perusal of the
figure in question. The parameter 7,, in addition to being density dependent, is inversely velocity dependent
through L, (see Eq. (4.212b)). Firstly then, it is rather obvious that we tend toward the Statistical theory
with decreasing velocity — this too we shall later divine from different considerations. In an assemblage
of equal numbers of electrons and ions the latter may be expected to move slowly, and our previous considera-
tion tells us that we then expect the statistical effect. Au contraire, as far as the electrons are concerned,
however, since their velocities may be expected to be much higher. Another look at Fig. (4.9) then tells us
that the contribution of the electrons to the line width should be negligible.

Let us now review the main points in Spitzer’s development of his Stark broadening theory.
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4.26. SUMMARY OF THE QUANTUM BROADENING THEORY AND ERROR EVALUATION

Spitzer began with three assumptions, namely, (A) THE STARK EFFECT I8 LINEAR AND THE ELECTRIC
FIELD PRODUCING IT IS HOMOGENEOUS, (B) COLLISIONS ARE BINARY, and (C) THE MASS OF THE COLLIDING
PARTICLES MAY BE TAKEN AS INFINITELY LARGE.* Let us consider these.

First, Spitzer’s approximate evaluation of the error involved in Approximation (A). The coordinates
of the photoelectron we shall designate with the subscript e. The distance from this electron to the ion is
taken as d, its position vector as r,, and the separation of the emitter nucleus and the ion we take as R.
These quantities are related as follows:

& =R +r?— 23R
so that the potential at the electron due to the ionic charge is:

y-_2__2%
d R
Now the upper levels of the photoelectron are broadened by the largest amount (see for example

Eq. (4.166)), and, from the point of view of the Bohr theory especially, they have the largest values of z,,

Ze, 1 g,y .\
{1+R+2R2(3z,2 G (4.222)

For large 3,:
<rl> = <32 > = <z, >?
so that:

Ze <z >
<V> —F<z. >{1+ R } (4.223)

It is apparent that the maximum value for z, is 7, so that, since the second term in Eq. (4.223) gives the
error, the maximum value of the error due to the assumption of a homogeneous ionic field is r,/R. We
should remark, however, that this method of determining the error breaks down for R less than three or
four < r, >.

Eq. (4.223) points up one more fact of importance. Since 3, is an average, its sign will not change. As
a consequence, the sign of the correction term <r, > /R will not change so that an asymmetry in the line
will result, since the mean perturbation will not cancel out.

We consider next Approximation (B). It is intuitively apparent that multiple collisions at short dis-
tances of approach will have a low probability. On the other hand, a close, binary collision will screen out,
at least partially, the effects of distant multiple collisions. 'We may expect then for large v; that this approxi-
mation is not too serious a one. As y; decreases (with the density) on the other hand, one would expect the
probability of a multiple collision to decrease. Spitzer specifies the value 1/5 for v, as an upper limit in
order that the binary approximation may be a good one.

Assumption (C) would be a particularly serious one only for electrons, and we have made note of the
fact that the ions, not the electrons are generally the important broadening agents.

Having made these assumptions the problem was set up assuming, as the intermolecular interaction
the linear Stark effect. Firstly, a quantum mechanical solution of the adiabatic — the quantum state of the
system remains unchanged — problem was carried out. We begin with the basic equations for the state
growths, Eqs. (4.157). The fact that the absolute square of the coeflicient b,,, (% ) is the probability that
the atom is in a state, in order to get to which it had to emit a photon of frequency », means that the absolute
square of this coefficient must also be the intensity of this frequency in the spectral line. This line of reason-

*We should recall that we consider this mass as infinite only insofar as any effects which the intermolecular interaction
may have on the perturber motion.
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ing leads to Eq. (4.163) for the line shape of one component due to one type of collision. The problem is
then carried through to the adiabatic solution of Eq. (4.172) for the line shape. During the mathematical
manipulation leading to this solution two additional approximations are introduced, namely, (D) THE
PERTURBER MOTION IS RECTILINEAR AND CLASSICAL and (E) THE FREQUENCY IN QUESTION IS MUCH FARTHER
OUT IN THE LINE WINGS THAN THE NATURAL LINE WIDTH — NAMELY, x ©>T'. We shall encounter ample
comment on Approximation (D) later, and Approximation (E) simply restricts the validity of the results
to the line wing.

Further, as concerns the purely adiabatic hypothesis, we noted the manner in which Spitzer’s results
reduced to the Interruption solution for T small and the Statistical solution for T large.

Next a nonadiabatic solution of the problem for the lowest Lyman lines was carried through, and it was
discovered that Eq. (4.172) held true for this case if T was replaced by ¢ where o? was approximately (1 + T)3-

Finally, the problem was considered from the Born point of view. The solution in this case, which
breaks down at approximately the point where the adiabatic approximation becomes valid, is given by
Eq. (4.207). :

The next step consists of an averaging of our modified Eq. (4.163) over the distance of closest approach
and velocity. This result is given in Eqs. (4.213). Finally, the weighted summation over the various com-
ponents results in the final form Eq. (4.217).

Let us take note of two more remarks of Spitzer’s in conclusion. To begin with, he was able to show
by a judicious utilization of Eqs. (4.167) that for close collisions, that is, for R as small as 10 < r, >, the
value of T will be quite large so that, since replacing it by ¢ is of little or no import, the collisions may be
considered as adiabatic.

By an approximate calculation Spitzer placed the following limits on the validity of Eq. (4.217):
(1) Excluding the error due to the inhomogeneity of the ionic field for the moment, Spitzer obtained an
error due to the method of calculation of Eq. (4.215) as not more than 10 percent and the equation is asymp-
totically correct except for the case 0.2 < v; < 2 and ¥, < 1 which Spitzer refers to as intractable. (2) A
consideration of the inhomogeneous ionic field, on the other hand, adds a correction for the Statistical theory
reduction. For the case where the theory reduces to the Interruption approximation the error is about
13 percent for temperature of under 30000°. (3) The theory breaks down completely for A A 45> 135n5'/n,%
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Fig. (4.1). Introduction of polar coordinates for the dipole
broadener case. § is the polar axis.

“

$
%

Fig. (4.2). Polar coordinates for the quadrupole broadener.
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Fig. (4.4). The Stark Theory line shape. (After Holtsmark59),
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Fig. (4.5). Path in the complex plane used for the evaluation of Eq. (4.122).
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Fig. (4.6), The line shape due to the quadratic Shark effect. (After Holtsmark$7.)
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Fig. (4.7). Stark effect line shapes for various collision phase shifts. (After Spitzer,173)
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Fig. (4.8). The physical conditions for the non-adiabatic collision.
The broadener and the emitter nucleus are in the y,z, plane.
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Fig, (4.9). Line shapes for a single H line component.
The solid line is the Holtsmark result. The dashed lines are
the Weisskopf results. (After Spitzer. 1 74)
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CHAPTER 5

STATISTICAL BROADENING

In 1926 Franck® presented a paper to the Faraday Society in which he sketched for the first time
the tenets of what is now the well-known Franck-Condon principle.

5.1. THE FRANCK.CONDON PRINCIPLE

In order to consider his conception, let us imagine a molecule which for convenience we may take as
diatomic. Let us further neglect the rotational motion and consider only the electronic and vibrational
energies. We suppose this molecule to be initially in a vibrational ground state. An electronic transition
now takes place to, say, some higher electronic states Now let us consider Fig. (5.1).

In Fig. (5.1) the curves for two electronic states — between which our transition is assumed to take
place — are given in which the molecular energy as a function of nuclear separation has been plotted. In
essence, Franck hypothesized that the transition takes place vertically between these two curves. This
means that the nuclei have the same separation immediately after the electronic transition as they did
before even though the potential curve which governs the nuclear behavior has been changed by the transi-
tion. Since in general, as is illustrated by Fig. (5.1), the new separation of the nuclei will not correspond
to the equilibrium position of this electronic state, the molecule will no longer be in a vibrational ground
state, and it will begin to vibrate, or it may be dissociated.

Shortly after the publication of these views, Condon?® suggested the manner in which this principle
could be used to predict intensities, one might say qualitatively. Let us roughly consider his graphical
method by considering Fig. (5.2). We are utilizing the quantum mechanical energy levels of a vibrator,
but we shall consider the intensity question classically.

Consider vibrational level “A” of the initial state. Classically speaking, the internuclear separation
during the vibration (corresponding to an energy of “A”) could neither be less than ““a” nor greater than
“b”. Further, the molecule will most often be found with an internuclear separation in the neighborhood
of “a” or “‘b”, since we may recall that ‘‘b” is the separation at which stretching has ceased and contraction
is to begin. Thus we may say that the most probable, and hence, the most intense transitions correspond
to “a” and “b”. If at the time of the electronic transition the internuclear distance corresponds to “‘b”,
the transition will proceed vertically to the curve for the upper electronic state, and then, since the vibra-
tional energies are, of course, quantized, would proceed to the closest vibrational level “‘B”. Thus, the most
intense transitions from level “A” will be to levels “B’* and “C”.

Condon® later modified this principle to strictly include the wave mechanics, and essentially this modi-
fication has the effect of adding an indeterminacy to the principle so that if, for example, 4 — B is favored
in Fig. (5.2), we will now have a band around the frequency corresponding to this frequency rather than
the frequency itself.

The foundation for a theory of spectral line broadening had thus been laid by Franck and Condon and
the theory itself was first qualitatively developed by Jablonski.’
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5.2. FIRST APPLICATION OF FRANCK CONDON TO LINE BROADENING

For the interaction energy of two atoms in a molecule Jablonski stated the Franck-Condon principle
as: “At the moment of the electron jump (1) the reciprocal separation of the atomic nuclei and (2) the
velocity of the nuclei are not noticeably changed.”’* It need hardly be considered stretching a point to
carry this principle over to the case of two free molecules, an absorber (emitter) and a broadener.

Let us consider, with Jablonski, the potential curves for two free molecules as given in Fig. (5.3).
These curves are repulsion curves, but for the principles involved the curve type is of no import. The
potential energy of the two particle system is given as a function of the molecular separation. If the broad-
ening molecule is an infinite distance from the absorber, the unperturbed spectral line of frequency corre-
sponding to E, — E, would be absorbed. In the event that the molecular separation were r, at the time
of absorption, the frequency of the line would have some different value corresponding to E',, — E,

We here neglect the lack of sharpness which would be present in r,.* With the aid of Fig. (5.3) let us con-
sider this absorbing transition in slightly greater detail.

Firstly, we have assumed that energy is conserved so that we have the T, V, and E curves as shown
for the two molecules in the initial state. Now the transition takes place at the separationr,. In accordance
with the Franck-Condon principle, the relative velocity of the molecules is not changed by this transition
so that immediately after the transition the point “x” on the T-curve still gives the relative velocity. Now,
however, the total energy is E’ and this too is to be conserved. Hence, as shown by the T'-curve the
relative kinetic energy of the particles after separation will be increased, and this increase is at the expense
of the incident radiation. The reverse effect could also occur, that is, the “effective” incident radiation
could be increased at the expense of the final kinetic energy. These interactions between collisions and
radiation had been considered by Oldenberg®®? ¢ and later by Minkowski.!?®

Thus, we see how radiation differing in frequency from that characteristic for the molecular transition
may be absorbed Qualitatively at least, it follows directly that “. . . the intensity distribution (and the
line width) is dependent on the profiles of the potential curves and the probability of different r values.””
Thus, the most probable r values would correspond to the most intense frequencies of the spectral line.
Since the probability of a given r would depend on the relative velocity of the “collision partners,” the
variable relative velocity which may be inferred from the T-curve in Fig. (5.3) must needs be considered.
Theoretically at least, one might now determine the line profile by utilizing gas kinetic theory.

It is apparent that almost any form of asymmetry of the spectral line could be obtained, depending
on the relative profiles of the potential curves. Before considering the matter of line shift, it might be well
to emphasize that the line frequency (corresponding to a specific r,) rapidly approaches the unperturbed
line frequency with increasing r regardless of the type of interaction curves under consideration. Thus,
it follows that, with increasing probability of small r, there will be an increasing displacement or shift of
the line intensity maximum. Small r would become more probable with increasing pressure.

In what has preceded we have considered the perturbing effect of only one molecule. In “reality”
many molecules would contribute to the disturbance, but Jablonski’s ruminations do give a qualitative

* This lack of sharpness of r will be considered at a later point. If the transition took place in an infinitely small time
interval or if the relative velocities of the partners were infinitely small, this lack of sharpness would not be present, and the
transition indicated on Fig. (5.3) would accurately represent the situation. However, the transition time is always finite.
Thus, we obtain a diffuseness which is caused by the fact that the molecular velocities are not infinitely small and results from

the exchange of radiation and kinetic energys* 137 13 during the process of emission. We shall see that this results in Margenau’s
*“velocity distribution.”
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idea as to how this type of spectral line broadening and shift are brought about. He envisioned it as
applicable to any type of interaction curves — . .. it can be exchange- as well as Coulomb dipole-,
quadrupole-, etc. forces . . .”™

$.3. CALCULATION OF THE VAN DER WAALS FORCES INVOLVED IN BROADENING

In 1932 Margenau'!! utilized, for the first time, the van der Waals forces* between two atoms of different,
types to explain the shift and broadening of spectral lines. Since *. . . numerous causes which can neither
be well controlled experimentally nor accurately corrected for by theory . . . may play an important role
in the phenomenon . . .”!! of broadening in emission, he considered only absorption.t

Van der Waals forces may exist among neutral molecules, so that an immediately apparent advantage
of considering these forces as the cause of broadening in preference to the Stark type lies in the poesibility
of explaining that broadening caused by molecules which possess no permanent poles. The first step then
lies in the calculation of these broadening forces.

Margenau first applied himself to the case of foreign gas broadening in which the absorbing atom is
in its lowest p-state and the broadening atom is in its normal state.

Let us consider Fig. (5.4).

The atomic nuclei are at (z) and (b), and the centers** of negative charge are at (x,y,2,) and (xyy,2,)
where the x-axis of the coordinate system to which the system is referred coincides with r, the separation
of the two nuclei. We here assume that r is large so that no electron interchangett effect need be con-
sidered. For example, one could take as eigenfunctions for, say, two H atoms ¢ = ¢, (1) ¢, (2) instead
of ¥ = ys (N, (2) + ¥a (2)¥5 (1), ete.

The interaction potential energy of the system will be given by:

V=es(_1_+l___1__L)

r s T Ty

e, e 1

r T\/(y:-J’:)’+(11—h)’+(xx’+xz’—2xxx:—2x|r+2xgr)+1
r r r

_i[ 1 é" 1
T [y m, G2 [T ‘/x_ 5t (- 2x)
\/r’+r’+ r L r=+r=+ r +1_

|2

O + 2m — 20%,) +

M|

pr]
'j [" 2% — 1'%+ 2y + 255, — 3xx,) (x4 — xz)]

+

wlos 1

§ [ntrt — Srin? — Sringt + 20y + mm + dva)t] + ...

* Margenau'® has cryptically but delightfully defined the van der Waals force as **. ., . that force which gives rise to the
constant g in van der Waals equation . . .”

t For the equivalence of emission see infra, Sec. (6.13).

*¢ If an atom possesses no dipole moment, to say nothing of the absence of a quadrupole moment, the centers of positive
and negative charge would normally coincide. Since we are not assuming the existence of any permanent poles, this apparent
anomaly should be explained. We assume here that & mutuoal polarization — that is, a drawing apart of the centers of positive
and negative charge — occurs, and we are then free to consider these charge centers.

tt See infra, Chap. 7.
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since r has been assumed large.* The first term is the dipole-dipole interaction term, the second the dipole-
quadrupole, and so on. Margenau utilized only the first term, so that the perturbing potential for the
system is:

V =% (0n + s ~ 200) G.D)

sothat: H=E,+ Vo+ V = Hi+ H’
Eqs. (2.26b) and (2.26¢) may be written down for this case as:
HY, + B0 = Es% + B (2:268
H%,"” + H',' = E.%," + E/V' + E," (2.26¢')
We now replacet ¢, by Z,‘ca,,kyh,“ and ¢, by i:b,,ky[q,", replace H%,° by E;°},°, multiply both equations
on the left by ¢,,% and integrate over all space to obtain:
OB %k + SUnH'Ypr = E,aumdpr + Ep'omn (5.2a)
bumEm b + Eankf Vn'HYdr = E %bumdmi + Ey'@pmbnr + Ep''Snm (5.2b)

These equations yield the first and second order energy corrections:
Ey = [O'H'V,p0dr = 0

"o opy o S0 @%V Y a) ¥ (B)dr [ ,4°(a) ¥ (B) Vi *(a) do* (b)dr *
B’ = Zay V. H Y 0dr = 2 1)V ¥ ¥ 19)¥5 (E,.o—AE 5 (5.3)**

k
- Z' | Vio,an I* (5.4)
E,~E + Fg - F

In Eq. (5.4) the E, are the energy levels of the absorbing atom, E, being the energy of the initial p-state,
and the Fp are the energy levels of the broadening atom, F; being the energy of the initial s-state. Vio4p
may now be written out as:

Vioar = [VapViudr = [E4()¥pQR)V(1)¢u(2)dridr (5.5)
since, as mentioned earlier, no electron exchange is considered. If, in the symbolism of Margenau, we let,
for example, x,4(1) = [¥4(1)x¢y(1)dry, | Vg a5 | may be written as:

[ Vieas| = g[}uz(l)}’osz(‘?) + 22(%5%2) + 4x2(Dxe5*(2) + 2714 (124 (V)y08(2)205(2)

— 42 (1)y1a(D20p(2)y28(2) — 40u(Dz1a(1)%08(2)208(2)] (5.6
Margenau utilized hydrogen like wave functions for both atoms which, in general, may be represented as:
¥nim = Ru(r)P, lm(',)e‘(m' v 6.7

* This is merely a different form of Eq. (4.16) which will be more useful here.
t See supra, Eq. (4.144) and preceding.
** B’ = [ ¢ia)xyla)dr [ ol b)agtb)drg + ... = ng(a)xho(a)dn ST [Rao)3r3 sin® & cos pdrddde + . .

= [{ }dr1ff{Rnokr* sin*$drd -0 + . . . = 0, since [ cos pd¢ = 0, and so on.
[}
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in which 1 is the orbital angular momentum quantum number; m is the magnetic quantum number, and
n is the orbital quantum number.
The following relations exist among the matrix elements associated with the broadening atom:

Exmym - E‘oaioa = iyonlos =0 (5.8a)

Zag?(2) = Zyah(2) = Zaa2) = 3O (5.8b)

We have summed over the quantum number m in Eqgs. (5.8) since it has no effect on the level energies,
but remains a spatial degeneracy parameter. rog (2) is to be defined below. Let us prove a portion of
Eq. (5.88) as an example.

Exonyoa Ef Vs(2)xvo(2)dr [ ¥a(2)y¥o(2)dr

+1 , .
=3 f { [ Ry R,y €™ P sint ¢ cosedrddde [ [ f Ry, R,y P"e™ r* sin? 8 sin pdrdddy

e -]

f [ f RiuRyP™ sin? 8 (™07 — ¢™=D9)irdsd, [ [ . .. | (5.9)

The integral over ¢ in Eq. (5.9) is zero unless m = =1, while when m = +1 the sum of all such
integrals over m goes to zero. The remaining portion of Eqs. (5.8) may be evaluated in a similar manner.
An inspection of Eq. (5.9) also tells us that, in Eq. (5.8b):

rg(2) = [f Ro(r) Rup(r)rdr? (5.80)

Certain relations may also be written down among the matrix elements associated with the absorbing
atom. Here the state is the p-state and hence m; = 0, &= 1. For the emitter then:

Form; = 0:
2 0at) = nam)| Lo+ 2] 5100
ZJ’M’(I) = Z z24(1) = rm’(l)—;f5zz (5.10b)
Form;, = &1 ) "
me'u) = na'lh) 5 LN (5.100)

Zym M = Zmn —ml)[ o+ o ] (5.10d)

Egs. (5.8) and (5.10) may now be utilized to obtain | ¥y 45/ summed over all values of the magnetic

quantum numbers for the states 4 and B. The result may be written as:

Form; = 0:

Z | Viasl® = :: 1u*(Drop (2)[-—-51,4:'*' M]&,,, (5.11a)

mAmp

[T

i e e B

ek B




Form, = + 1:

z [ Vieasl®* = £ 'u’(l)"oa’(z)[l?hu + —1—-5130]5;,1 (5.11b)
r 45 9 |

mAMmEB )
Margenau expressed the interaction energy in terms of “‘dispersion-f-values* which are proportional
to the absorbing transition probability. If we denote the f-values for the emitting atom by f,, and for
perturbing atom by go5, we obtain:

fu= B2 G - B) i) + 5140 + 500)]
8 2 1
=;T@—ammﬂgw+;m] (5-12)
808 = 8;;? (FB - Fo)rOB' (2) 8!41 (5'13)

If we now let f,4, be the f-value for the d-states where 4, = 2 and f,,'’ be the f-values for those states
where I, = 0, the substitution of Egs. (5.12) and (5.13) into Eqgs. (5.11) and the subsequent substitution
of Eqgs. (5.11) into Eq. (5.4) yields:

Form, = 0:
1 he f A'§oB f!A"’BoB
E,=— L3 ( ) { ! 4 5.14a
. r* 4m? 5 ZB Dyp + ZB Dyvp ( )
Form, = +1:
1 /19 Jrags Sragon }
Ey=— — —{— === 5.14b
“ r 4m’< ) {10 Z Dan | Az, Dyp (5.148)
It is thus apparent that ‘‘. . . the interaction energy between one atom in a p-state and another in an

s-state depends on the orientation of the former . . .”!!! through the value of the magnetic quantum namber
for the p-state.

Eqgs. (5.14) may be rewritten as:

1 3 (he) {22 — 3m? 5= fuuon fuursis
Eo=-13 —){ 1 4 — 3mp) S St
v ” 4,,,’(21 10 2,; D, T & 3md) £ Dyop

and if, ignoring the dependence of the energy on the orientation, we sum over m, and divide by three, we

obtain, as average E,,:
4 + ”
<E10> = - .1_._.._3_’(’1’;.) { f.._._“‘ 80_ B + flA gOB}
r* 2m2\ 2r 4B DA'B Y DA"B

This equation obviously has the same coeflicients for the f,4- and f,4~ so that we may write our expres-
sion for the interaction energy as follows:

-1 3 (he fiagon
<EBw>= - _) Dis (5.15)

This corresponds to the more general form for the interaction energy which had been obtained by
London'® as:t

¢ Another name for pscillator strengths.
t We shall discuss London’s interaction considerations in some detail in Chap. 8.
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1 3 [he\t 2: fara8pB
<El>=——-——-(_) LA 40BB ’
4 r* 2m* \2r 48 Dapap S (5.15)

In this equation S refers to the terms which would enter if interactions of higher order than the dipole
were included in the perturbing potential. Margenau''? had investigated the effect of these higher order
terms on the van der Waals forces.

Eq. (5.15) may be simplified by applying the London approximation !° that the summation of gp
over B may be replaced by the multiplicative factor aAF where « is the polarizability of the broadening
atom and AF is the mean energy difference for a transition with the resultant absorption of electric dipole
radiation by the broadener. As Margenau notes *“. . . Except in the case of rare gases, this will introduce
considerable errors . . .”!!! since, for rare gases, * . . . the transition from the lowest state to the next higher
state . . . involves an energy which is an appreciable portion of the ionization energy.”'! Eq. (5.15) thus

becomes:
1 3 f(he\ f
<E>=-————) AF k4 1
o ( AF 3 TR R T ETE) (5.16)

If we consider the sign of <E;,> we find that it is dependent on the sign of (AF + E, — E,;), that is,
on whether the transition is an absorbing or emitting one, since f,,/(E, — E}) is always positive and the
sign of the remaining factors is obviously always positive. This fact leads to (a) a negative value for E
and hence an attractive interaction force for k = 0, the absorbing atom initially in the ground state or
(b) the appearance of negative terms in the summation for E, when k > 0. Let us assume, however,
that <Ey,> and <E,> are negative so that the ground and first-excited states of the absorber — we
consider here only this transition — are distorted into energy curves which are functions of the atomic
separation r, and similar to those shown in Fig. (5.5).

In Fig. (5.5), E would correspond to the frequency of the absorbed radiation when the absorber is
not perturbed by the broadener. The separation of the two curves at lesser values of r would correspond
to the frequency of radiation which is absorbed when the absorbing and broadening atoms are separated
by these values of r. There is, as has been mentioned, a lower limit to be imposed on r. For example,
in the case of the broadening of Na lines by K, Margenau felt that the equations for the interaction energies
“. .. certainly fail at distances of the order of 5 or 64.”'"!

Having obtained rather detailed information as to the forces which, in the present theory, are to act
as broadening (or shifting) agents, let us proceed to a consideration of the manner in which these forces
are presumed to give rise to this broadening and shift.

5.4. LINE SHIFT ACCORDING TO THE EARLY STATISTICAL THEORY

To begin with, the following assumptions were made:
“l. Atom I (the absorber) is surrounded only by individuals of type II (broadeners).
“2. The mutual attraction between structures II will be neglected* . . .
“3. Internal electronic changes of atom I, caused by absorption of light, occur adiabatically
with respect to its surroundings. . . .
“4. The transition probability of atom I is independent of the configuration of the perturbing
atoms . ..

® This is similar to the assumption of point broadeners (see supra, Chap. 4).
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We now establish a coordinate system whose origin lies at the absorbing atom and to which the position
vectors ry, . . . o 7y of the n broadening atoms are referred. If we let the interaction energy between the
absorber in its ground state and the i-th broadener be ¢(r,), the system energy is Ze(r). In like manner

the energy after a transition becomes E + 5(r;) where 5 is as given in Fig. (5.5). Thus, the change in the

energy due to the transition is given by:
Alri...r) = E+ 2 [n(r) — «(r)] (5.17)

From Eq. (5.17) we may obtain the average energy change as:
<A> = [ FPMAE + Z[n(r) — ()]} do/f e~ 1474 (5.18)

In Eq. (5.18) we have, in the numerator, integrated the energy difference over the entire 3/V-dimensional
space. In this integration the energy difference has been weighted by the Boltzmann factor for each d0
range in the 3N.dimensional space for the ground state energy. Each point in this space will, as in the
Stark broadening consideration, correspond to a certain configuration of the system. “The integration in
the denominator is performed over the space of each individual separately and yields approximately V™, ¥
being the total volume of the assembly; for e(r) is known to be different from zero only in a very small
sphere about the origin, so that in the remainder of the volume of each individual the integrand is one."
The disappearance of e(r) is, of course, predicated on the fact that the curve of this function is virtually
a straight line except near the origin. The assumption pertaining to the integration is strictly true if all
atoms are considered point masses or if the density is very low as seen in Chapter 4. In the event of finite
atomic diameters, previous occupancy would exclude certain portions of space from the integration for
each particle. The errors introduced, however, are probably not as great as those introduced by other
necessary approximations. Let us consider the numerator.

-!'»,c(fo')/kT

fe (E+ 2 = e(rd]} da = EV + fe™ AT e™WMTly(r) 4 4 1) = olry)

~io—€(ry)]d2 = EV* + V7Y e O [0(r)) — e(ry)]dry s+ ...
+ [em ™M [y(r,) — e(ra)] dridurda;
=EV*+ V*! nfe AT [yr) — «r)] daidusds,]

Thus, Eq. (5.18) becomes:
<A> =E+ —';; / e AT [0(r) — ¢(r)] dx,dxsdx,] (5.19)

Now if we assume that r > r;, n may be replaced by Ej, for R, < r  © and the dotted curve given
in Fig. (5.5) results. In like manner e is replaced by Ey within these limits. For r < r; we assume a statis-
tical weight of zero for A. If we let Eyy = —b/r* and Ey = —a/r%, we obtain:

(@a—b)_(b—a)
" Exw

n(r) = «(r) =

80 that the line shift becomes:

D=drl—0 Vﬁ f Ewe=50T 134, (5.20)
R,

which is simply the Maxwell-Boltzmann weighted average of the energy shifts.
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The dependence of the pressure shift on the density of the broadening gas which had been found experi-
mentally by Fuchtbauer, Joos, and Dinkelacker® is given by Eq. (5.20). The differentiation of Eq. (5.20)
with respect to the temperature yields the following approximate dependence of the shift change on the
temperature change:

(.4
~e¢/kT.
14D 1 ,!: ee rdr

1 a
D 3T kT? f“"’" dr 3kT? R,*

(6.21)

Up to this point we have closely followed the approach utilized in Margenau’s!"! first paper on the subject
of broadening,* but it behooves us now to use a later and more general work!? for the continued development.

5.5 EARLY ATTEMPTS TO OBTAIN STATISTICAL LINE SHAPE

The fundamental hypothesis on which the theory will be developed was stated by Margenau as *“ . . . the
chance that the energy of transition of the atom lies within the range ¥ — 4dV to ¥V + 4dV is proportional
to the length of time which the system spends on that part of curve 5 or ¢ whence a transition within the
range of energies can occur.”"? This hypothesis, when advanced as the basis of spectral line broadening,
was, of course, in disagreement with the theory which Weisskopf'®*{ had recently advanced.**

This chance of the transition energy corresponds to the intensity of the associated frequency interval
in the broadened line. We denote the intensity by I(V), and it follows that:

IV)dv = {dt (5.22)

In Eq. (5.22) c is simply a constant, and we are integrating the time over the energy range, d¥, under
consideration, ‘. .. the length of time which the system spends on that part of curve n or ¢ whence a
transition with the range of energies can occur.”'? A repetitive but important statement.

Before proceeding, we add two conditions to those already in force. (a) In considering the n foreign
perturbing atoms we neglect the Maxwell-Boltzmann spatial distribution factor, and (b) we consider the
motion as uniform between two collisions. We may neglect the Boltzmann factor, which would be e ~*"/*T
for the initial state distribution, *. . . for ¢(r) is known to be different from zero only in a very small sphere
about the origin . . .”"!! as we have seen earlier. The reason for assumption (b) above will become apparent
in what is to follow.

Now let the radial coordinates — referred to the origin of coordinates which has been established at
the absorber — be given by ry,ry, . . . , 1, for the n perturbing atoms. Thus, under the assumptions (a) and
(b) above, Eq. (5.22) becomes:tt

IVav=cf...f {f f...[rt . .rtein dy.. .sin O, dry. . .dr, d9y...d0, doy. . .dg,
n~V ra~V L] (]
=cef... £ rd. . ontdn. . .dr, (5.23a)

* It should be mentioned that Kulp® independently covered much the same ground as did Margenau at about the same
time.
t See infra, Chap. 6.
** In the process of advancing, Weisskopf hurled a rather blunt verbal harpoon at Jablonski's theory’™ which after all
forms the basis for the considerations of this chapter. Margenau's return thrust™ will be discuseed at a later point.
ttInstead of “time” being now the determining factor for our d¥ “chanoe™, spatial distribution is the factor due to the
assumption of uniform motion.
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where r, . . . r, are integrated over that range which gives the desired dV. d¥ now refers to the difference
between the perturbed energy and the unperturbed energy ¥, . It is apparent that c is simply the normaliz-
ing factor v™" so that we obtain:

IV)dV = (ﬂ) f . ./r;’. corptdr. . dr, (5.23b)
v v
Let us refer back to Eq. (5.16). For the lower state we let ¥, = —a/r,*, and for the upper state we let
V, = —b/r;%. Then for the interaction energy change due to the i-th perturber we obtain (b — a)/r;
so that the total line perturbation becomes:
1
=@ - a) 2 == (5.24)

t=] i 1wl '

It would be convenient to rewrite Eq. (5.23) as an integral over all configuration space. As in the
Stark effect considerations, we may accomplish this by multiplying it by a Dirichlet factor which has the
value one for — 4dV < V £ 4dV and zero for all other values of V. After the suitable Dirichlet
factor has been chosen, Eq. (5.23) becomes:

+o
”® .
I(V)dV=l(‘3.’) /.../fdr M—Mexp[—iVT-l-iﬁTZ-—l—]r,’...r,.’dn...dr,.
LAWY | T it
400 R

1 f4x\" [ sin (3 v .
_ _’r__(_vf) /sm (%:‘JV) e=iVT [/ $BT /r 2dr] ar (5.25)

- R

The limits which have been placed on r in Eq. (5.25) call for clarification. We have mentioned the
necessity for putting a lower limit on r, and this is, of course, R,, since we cannot expect our potential curves
to be valid at very small 7. R is defined by v = 4/3 x R’ the volume of gas under consideration. In Egq.
(5.25) we have also rewritten the product of the n integrals as the product of n identical integrals as was
done in obtaining Eq. (5.19).

By virtue of the “smallness™ with which the definition of a differential vests it, we may replace
sin (3T d¥) by (3T d¥) in Eq. (5.25). If we let:

_ 8 . _ 2 x ﬂl/ﬁ
E=gs v =—-33 5
Eq. (5.20) becomes:
v +o B/Rs
IVydvV = 2 e"‘"[ / ¢ u(E)dE ]"‘dr : (5.26)
- B/R?
If we now let 2 e
e No s x ¢
f(1) = —;—ﬁ”’ E‘de (5.27)
k4
where v = 8/R,*, we obtain:
] +o
Ky) = 2"/3‘""' [fJdr (5.28)
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Nowlet Ty = x,v, = 4/3 x R’ andu = TE. We now integrate by parts to obtain:

sRi*/RY ZRS/R 0
2x [Br\1/2[ € , e . Uy & .V e
fx) = 3_0_(-; { S| T 2;/ ;T/'zd“} =1 —-'-:—e" - l-;!xl/gfl?/; du (5.29)

The remaining integral in Eq. (5.29) is a combination of Fresnel integrals which Margenau obtained
from Jahnke and Emde,*®* so that:

J@ =1 =" [Virx S(x) + con x ] + i [V2ex C(2) — sin o] (5.30)

From Eq. (5.29), it is apparent (we recall that v, is a small sphere of radius R,) that | f(x)| < 1. This

n —_— —_—
fact justifies the replacement of Eq. (5.30) by exp [— —:—l { V2rx S(x) + cosx — i V2xx Clix) +i sinx}]
since the right side of Eq. (5.30) may be considered as the first two terms of the McLaurin expansion of the
exponential before raising it to the n-th power. Eq. (5.28) thus becomes:

+
Iv) = 5:—7 /exp[—'—'f{wlz—f;su) + cos x — iV2xx C(x) + isinx} - ij:'x]dx

Since C(—x) = iC(x) and S(—x) = —iS(x), this equation becomes:

Iv) = ;}Y coe[ﬁsl [V2xx C(x) — sinx] — j.;‘x] exp[— %{VE;S(.:) + cos x}] dc (5.31)
H

Eq. (5.31) gives the intensity distribution in our asymmetrically broadened, shifted spectral line, but
it has the undesirable trait of responding only to graphical integration. Margenau'"? carried out the requisite
graphical integration for n/v corresponding to 50 atmospheres, 8 = 47 volts X A%, and R, = 5.64. His
results are given by the dotted line curve in Fig. (5.6). The solid line curve is the Hg 2537 line as obtained
by Fuchtbauer, Joos, and Dinckelacker** for broadening by 50 atmospheres of N,.

It is apparent from Fig. (5.6) that the theory shows poorest agreement with experiment on the blue
side of the line, since no agreement at all may be considered relatively poor. Eq. (5.31) allows no broadening
to the blue (or shift), and the theoretical intensity always goes to zero at the unperturbed line position.
The reason for this becomes apparent when we consider the fact that we have not allowed transitions at
separations less than R;, thus neglecting thoee portions of the potential curves which give rise to blue shifts
of the frequency. “Furthermore, the assumption of uniform motion between collisions does particular
violence to transitions taking place on the inner portions of the curves.”!!$

An approximate calculation!** yielded a symmetrical line

1
I(V) = —=— ¢~"<E> =")"/3ns (5.32)
v om
4=B i .
he <E> = —C_ g = , :
where SeR7 o 97&11 and a half width
1.36 (n 4 )} B
dm _{— — R} ) .
h \e 3 "/ Re (5.53)
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Margenau'” next considered various shapes of interaction curve in an attempt to obtain from Eq.
(5.25) various spectral line forms. First, we consider Eq. (5.25) in a one-dimensional form for simplicity,

Then we assume the e-curve in Fig. (5.5) to be flat, so that we may replace ﬂ}:-!; by Z f(x;) where f(x;) is
Fg
the n-curve for the i-th particle. Eq. (5.25) then becomes:

V)V = E:_{Z"JT['#D] ,—M; ] " of VG gy | dx, (5.34)

It may be noted that in Eq. (5.34) the lower limits of the r- integration are zero. This may be inter-
preted as the distance of closest approach of the broadener rather than separation zero.

Figs. (5.7a), (5.7c), and (5.7e) give the f(x) curves which allow the evaluation of Eq. (5.34) in a closed
form to yield the line shapes given by Figs. (5.7b), (5.7d) and (5.7f).

Our theory has now developed to the point where an explanation of the line shift has been obtained
As we have mentioned, Fuchtbauer, Joos, and Dinkelacker*® had found a linear dependénoe of the line shift
on the pressure, and the theory appears to have yielded this through Eq. (5.20). In addition, the theory has
yielded the line shape through Eq. (5.31). This equation has not yet proven amenable to evaluation in
closed form, and this closed form evaluation would appear to be the next step. At about this stage in the
evolution of the theory, however, Kuhn® and Kuhn and London* brought up certain additional difficulties
to be resolved in and features to be incorporated into the theory.

5.6. SOME OBJECTIONS TO THE STATISTICAL THEORY

Kuhn and London®* pointed out that the statistical distribution of intensity — what they termed the
“occurrence distribution” — only agrees with the actual distribution in the case of infinitely small values
of the molecular velocities. For finite velocities each point on the distribution curve should be ioligned
a diffuseness as has been mentioned® in connection with Jablonski’s first paper™ and subsequently ignored.

Kuhn" investigated shift and broadening in a semi-quantitative manner with a view toward using
these phenomena to determine intermolecular forces. As a result of this investigation he felt that (a) the
theory yields a line shift dependence on the square of the pressure rather than on the pressure as had been
advanced, (b) the intensity in the long wave length wing of the line should vary as (A») %% and (c) the inter-
action energy — f8/r* might well be replaced by — 8r® for certain cases.

Let us consider and dispose of (c) above first. As Margenau® pointed out —8/r* yiclds reasonable
results above a certain separation; whereas, higher powers of r become appreciable only at small distances
of separation. If a dependence on r~? is assumed the outer and major portion of the potential curve is
falsified, and certainly no improvement is obtained. The ideal but impractical solution would, of course,
be the use of r~° and higher power terms.

As concerns (b) above Kuhn concludes that ‘. . . the proportionality to V.. . is.. . illusory .. ."™,
and we may follow his reasoning by considering Eq. (5.20) which may be slightly rewritten by neglecting
the Maxwell-Boltzmann factor as:

4 n 1
D=gl-brya (5.35)

* See supra, p. 94,

e A
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“Identification of . . . (D) with vy — vp,,is only possible if R is 1nade equal or proportional to the average
distance of the atoms, i.e., if 1/R is proportional to n/V which makes . . . (D) proportional to (n/V)%.""
This proportionality between the shift and the square of the density brings about a disagreement with
the results of Fuchtbauer, Joos, and Dinckelacker,* the resolution of which we will defer. Since we have
so far only obtained the intensity distribution in integral form, (b) above as yet presents no contradictions.
Insofar as the method by which Kuhn obtained the intensity dependence on Av is concerned, it is so quali-
tative as to render its inclusion here of no particular moment.

5.7. THE STATISTICAL LINE SHAPE
In Eq. (5.25) let us, with Margenau,' replace ¥ by A», where A» is the frequency separation from the
line center, to obtain: '
n +e
I'(a) d(a) = l(i‘_”) f s f P . ... dr, / ap DRI wamrames s 36)
v
-l

x

where the limits of integration are the same as those which have been applied to Eq. (5.25). It is certainly
legitimate to replace e~ *™* by 1 — (1 — &*"™), and, after expressing Eq. (5.36) by the product of n
identical integrals and replacing sin (T d(A»)) by 4T d(A») as has been done previously, this yields:

Iy = % (4—:-):2. .m-'“’“{ / [1—@— ] r'dr} (5.37)

Now let us consider the term in braces in Eq. (5.37). The integration should be carried from the
closest separation R, to a maximum separation d which is, of course, related to the volume of gas under
consideration by v = (4/3) x ®. Since R, is small, it is apparent that only a very small error will be
introduced by integrating r’dr from the lower limit zero. On the other hand, the error which we shall
introduce by taking lower limit zero for the remainder of the integrand in the braces will require discussion

later. We may write (l - el'ﬂ'l‘]") as ~ ip;':‘ + E;—’T—: T e ,ﬁ’om which it is apparent thlt, "nlmdill“p,
r
we may take infinity as the upper limit of f (1 — ¢'’*™) r'dr with no appreciable error. Thus we obtain:
; V 4xV’
1 — (1 — e~/ r‘dr=——(l-——-) 5.38
SO — Q- ™M) y v (5.38)

where " = [ (1 — ¢#"")rdr. In raising the braced expression in Eq. (5.37) to the nth power Margenau
& p

“. .. allows the volume of the gas to increase indefinitely while maintaining N = n/V constant.”"* This
amounts to the same procedure as allowing d to approach infinity, while keeping the density constant.
Since lim (1 — 4x NV'/n)" = e~*"¥V, Eq. (4.37) then becomes:
+o
Ir'a) = -2-1- / dTe~V@NT @ 4rNVI(T) (5.39)
g

when the factor (4-;;) in Eq. (5.36) has been cancelled by the reciprocal of this factor in Eq. (5.38).
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Now let x = BT/rtin V' and rewrite V' slightly as:

iy = (ﬂ'r) / (“W +i x”/’) & = (BT3)1/2 /(ml,/: m) i = \/216'1‘ L—-i) (.40

0 0

where an integration by parts followed by the reasonably intelligent use of an integral table yields the
result. Substitute Eq. (5.40) into (4.39) to obtain:
+w
I'(ay) = — / d'r{ —i(aNT 4~ 2/8 Nxirgr/iin a/azvrmpmrm}

/dT l+ /dT } = _!_/d;r s(an)T —53/8Nr'/'ﬂ|/"l' —2/3Nr'/'pl/!‘l‘l/l

+ _1_ / dTe O g=3/8 NaVigysTivs 2/3srips /opiss
2r

1 r 2 —_— —_
= :/exp [— —; N\lzrﬁ'l‘] cos [(AV)T - %'Nwlzm] dr
0

1|,st/eN(A,)--a/m exp[ 4 fﬁN’]

3 9 A (5.41)
from the tables.
Iwelety = -;—rﬁ”’N for convenience of notation, this equation becomes:
I'(av) = v(&y) ~3/% g=r' /0 (5.42)

It should be made clear here that positive A» refers to a displacement from the unperturbed line posi-
tion toward the red, that is, negative frequency displacements. As Kuhn® had predicted, the intensity
in the wing of the line where the exponential has become small varies as (Av) /2, We may further note
from Eq. (5.42) that the poor correspondence between the predicted and the experimental curves on the
blue side of th= shifted line remains, and that the intensity again goes to zero at the position of the unper-
turbed line as in Eq. (5.31). The superposition of the velocity distribution on this statistical distribution
tends to alleviate this non-agreement. We shal! continue to defer a consideration of this superposition.

5.8. THE STATISTICAL SHIFT AND HALF-WIDTH
The shift of the intensity maximum of the line may be found by equating the first derivative of Eq.
(5.42) to zero as:
2 2 V.
By = —3—17’ = (-5- ) BN? (5.43)
The noteworthy feature in Eq. (5.43) is the dependence of the shift on the square of the density in
agreement with Kuhn.”? This leads us to a contradiction of Fuchtbauer, Joos, and Dinkelacker’s results,
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or does it? Fuchtbauer et al’s observations were made on the Hg2537 line broadened by pressures up to
50 atmospheres. Margenau and Watson'®! had also found a linear relationship between pressure and line
shift in the case of the Na D lines for relative densities® around 10. Later the same authors reported's
departures from this linear shift behavior in the case of the K resonance lines at relative densities above 20.
From these investigations Margenau'** concluded that Fuchtbauer®* et al’s measurements and the later
ones of Watson and himself'** had not been carried to sufficiently high pressure to show the quadratic
dependence on the gas density. This is, of course, not completely conclusive at this point.
Also from Eq. (5.42) or its plot, we may obtain the half-width of the shifted line as:

5 = 1.85 xy? (5.44)

Before leaving Eq. (5.42) let us briefly consider the effect of taking lower limit zero in Eq. (5.38), —
This effect is indirectly connected with the simple assumption of a potential curve of the form r~* which,
as we have noted, is increasingly inaccurate as the optical impact separation (distance of closest approach)
falls farther below 104. — The effect of allowing these atomic separations of such small magnitude is to
overly lengthen the tail of the line by permitting unwarrantedly large values of Ar. It is apparent that
the intensity should be practically zero for Av > Ay; = 8/R,* for the true statistical distribution. Thus
the ratio Av;/Avy,, should give us a rough measure of the validity of Eq. (5.42). If we assume R, ~ 54

Avy

- 1o
Avpax el 2 N N7 (5.45)
(54) (?r) N2

where NV’ is measured in units of relative density. Thus, the ratio varies from 10* at relative density unity
to 10 at relative density 30, so that the validity of the theoretical line wing decreases in this manner. At
relative density 30, the intensity corresponding to Ay is 10 percent of the maximum so that the error due
to our lower limit of integration will be less than 10 percent for this pressure.

59. SUMMARY OF THE EARLY STATISTICAL THEORY

Up to this point the development has been primarily classical. We have assumed that an interaction
which is proportional to r~¢ takes place between the absorber and its perturbers, this interaction being
different for the ground and excited states of the absorber. Thus, say, unique electronic transitions result
not in the absorption of radiation of.a unique frequency but rather in the absorption of a band of frequencies,
the frequency absorbed being dependent on the separation of the absorber from its perturbers. The intensity
of any given frequency in this line is now taken proportional to the probability of a configuration of the
perturbers such that the system, absorber 4 perturbers occupies the position on the interaction potential
curves corresponding to this frequency. Thus, we see the semi-classical approach which has so far been
exclusively applied.

5.10. THE JABLONSKI THEORY AND PERTURBED TRANSITION PROBABILITY

Jablonski™ felt that a wave mechanical theoryt of line broadening should be developed and that
“. .. derartige Theorie soll im engsten Abschluss an die Wellenmechanische Theorie der Bandenintensitati-

* Margenau and Watson had defined the unit of the “relative density™ as *. . . the amount of perturbing gas used in
the experiment at 0°C. and 1 atm,"®

t The Jablonski theory is the sole quantum brosdening theory which does not utilise the assumption of the “classical
path,” that is, it is the only theory which treats the translational motion quantum mechanically.
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verteilung entwickelt werden.”” To this end Jablonski’s paper of 1937" and those which followed’*™
were devoted.*

We begin, with Jablonski,”™ by assuming that our absorber (emitter) and the NN, perturbers, whose
perturbing influence shall be responsible for the broadening of the spectral line, go to make up a very large,
(Ni + 1)-atomic molecule.

We are interested in the two eigenfunctions of this molecule which are associated with the two states
between which the radiating transition is to take place. Let these eigenfunctions be designated ¢(E,q,r)
and y'(E',q,r). Eand E’ are the energies of the two states; g represents the totality of all electron coordinates,
and r is the aggregate of the nuclear coordinates. In order to avoid the use of eigendifferentials, the atomic
system is restricted to a finite volume ¥ so that (E,q,r) = ¢'(E’,q,r) = 0 for r ¥ R, where wehavereferred
all r; to a coordinate system at the emitter and have placed the emitter at the center of a sphere. This
restriction to a finite volume, of course, quantizes the nuclear translational (molecular vibrational) motions
although our level density will be great enough so that we shall closely approach the continuous curvee of
our earlier considerations.

The first approximation, that of the separability of electronic and nuclear motions, is now introduced.

V(E,q:r) = V,(E, Q¥s(Epr); E = E, + E, (5.462)
V' (E'\qr) = ¥,/)(E sV (Ersr); E' = E/ + Ey (5.46b)
If we consider an electronic transition, Egs. (5.46) yield for the matrix element of E «—— E’:

Dy’ = f J’(Ec's Q)W.(Eu q)dfq f Ek'(Eh N (B, )d'rr
= M [y (B, r)¥s(Eyp, 1)dr, (5.47)

In the first approximation M is independent of r, and we may note that this is merely a restatement
of the Franck-Condon principle in that this infers that the nuclear motion is momentarily unaffected by
the electronic transition. Were we to proceed to the second approximation we would there find M a linear
function of r.

We must now find these nuclear eigenfunctions and in order to do this, we first recall an assumption
which has already been utilized. It is assumed that the perturbing forces are additive, which means that
the nuclear eigenfunction for the system may be represented as a product of nuclear eigenfunctions as
follows:

nN

¥ = I‘I Vi (5.48)
The reason that this product results may be found in the separability of the Schrodinger equation which
results from a potential energy of the form U(r) = }‘: Ui(r,), where r; is the radius vector linking the
emitter and the i-th disturber. Thus, Eq. (5.48) would yield IV, equations of the form:

[42£ Ve + E - Uyry ] Yi=0 (5.49)
m

where i refers to the i-th perturber. Let us obtain Eq. (5.49) after the manner of Bethe.¢
We consider a system consisting of the emitter and one perturber. Let the mass of the emitter be M

® One of these articles” was not available to the author. The material contained in this article, howsver, is covered
by subsequent papers which were consulted. ,
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and that of the perturber m. Let the coordinates of the emitter be (5", "), x:™) and of the disturber

(%@, 5@, 7). Then the emitter-broadener separation is r* = V2 + 2 + x5* where:
Y TR . xg(’" - xg,“) (5.50‘)

and the coordinates of the center of mass of the system are:

X; = fx.-“’ + %x“” (5.50b)
The Hamiltonian of the system ia:
H= -225,- + -gl;- + UE)
which yialds the Schrodinger equation:
Losws+ 21,% Vi + (B~ Uy =0 (5.51)

3
where V2 = ;_;;;‘%ﬁ The eigenfunction ¥ is & fonction of the six . Utilising Eqs. (5.50), wo may

easily lhow’th‘t, since W = y(X, (ﬁmo &@)v*n (‘lmv xxw) S E
@ (BN P L _qypas & P amini=]
™" (Ml) X T my M"XJ+ o’ ™ M for j = 2 (5.52)

whn‘:xn - .:':M. Utilising Eq. (5.52) we may now transform Eq. (5.51) to the following:

B S B L
2(M+m),z,ax,'+z,‘,_, ax,:+w Unle =0 (5.53)

If we neglect the center of mass motion as given by the first term in Eq. (5.53) — separability allows
us to do 80, and, in addition, this has no effect on our problem — we obtain Eq. (5.49), and this equation
deacribes the behavior of one of our broadeners with respect to the emitter.

Now let it = 3:? and U(r) -'3.-:‘ ¥(s) in Eq. (5.49) to obtain:
VY + (k- UPly =0 (5.54)
The solution® to this equation, after setting it up in spherical polar coordinates, is:
h = § AP (008 ©) Ly () (555)
where rLy; (r) = Gy (r) satisfies the equation:
®u o pyy -0+ D]
& "‘["' U -=3 ]G"‘ 0 (5.560)
Mkmmhuhmaw'mdm%mdnhﬁnmm
* Son infrw, Eq. (9.34) and subsequent.
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Vig+1) / In solving a Schrodinger equation for a given U(r), one obtains a set of orthogonal eigen-
functions, but in the case of this system we have U(r) and U’(r) for the two states between which our
transition is to take place, and the L,; and L', resulting from these different nuclear potential functions

for the two states are not generally orthogonal. We may then write:
T ®
/ ww'dr = 2x / f ? ? A4, Pi(cos ©) Py(cos ©) Liy(r)L'yy(r) - sin 6dOdr (5.57)
00

In Eq. (5.57) the integral is zero unless I = I’ due to the orthogonality of the Legendre polynomials
which amounts to another restatement of the Franck-Condon principle in that the relative angular momen-

tum remains constant during the radiating transition.
The Wentzel-Kramers-Brillouin (WKB)* approximation yields the following solutions for Eq. (5.56):

1 pre
— 9_7',' PO e r < 1o
Lo m Vpu ()
m= '
1 r
—— 2 cos .
— [7 / pu(rdr 4 ] for r>n (5.58)

where py, (r) =\/ B-Ur - L :; 1) » the radial component of the relative momentum. r, is the collision

partner separation for which p,; (r) = 0.
Now let us consider Eq. (5.56a) for the case of large r where k* K U(r) +

case we should expect a solution of the form G;; = A(kr + T), the solution to:

+1)

ra In this asymptotic

J‘Gu
Irt (7] ( )

Upon the evaluation of 4 and T'™ one obtains, for r > rt:
c . Ix
Ly = — gin (kr - —+ m) (5.59)
r 2
where 1y is the phase difference. We may now apply our boundary condition y¥; = 0 for r = R to obtain:

Cc . I
R lm(kR-zl-l-m)-o

or kR — 121 + m = gr (5-60)
where 1 is an integer. From Eq. (5.60) we may evaluate k and subsequently the energy:
l ]
nr +x ~ in)
E = ke -( 2 " (5.61)
2u 2uR®

* See Appendix VIIL,
t Jablonski choss the lower limit of r as ~ 10~ em.
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Let us determine from Eq. (5.61) the energy level density. Differentiation of Eq. (5.61) yields:

g . VuR 1 dy (5.62)
dEg W,V—E-‘ x dEg

as the number of levels per unit of energy appropriate to the angular momentum VI(! 4+ 1) h. Eq. (5.62)

is valid for the level density for R large compared to the range in which U(r) + l—(l—:-y is not small com-

pmd to k%
We now form the overlap integral:
R RN N R
j; e _!; I? L‘.[ Lé,.'l rl’ dr; ces dl',. = E { G;ﬂ Gi,.’] dr; (5.63)

If we now let
N, Ny, R
n‘ Pipwy = I‘I I .{ cs‘nl () G' iy (r) dr I’ (5.64)

Pty the square of the matrix element for the i-th broadener, is the probability that the nuclear state
will proceed from n,! to n’J as a result of the electronic radiating transition of the emitter. The product
given by Eq. (5.64) is the probability that all perturbers will undergo this change in nuclear state due to

the radiating transition. We normalize the probability of finding a perturber somewhere in the region
0 < 7 £ R in the usual manner:

R
{ | Gim (r) Pdr =1 (5.65a)

Since except fora emall region (r <10~7 em.) Gy (r) = rL;y; = csin (kr — 121 + m;), we satisfy Eq. (5.65a)
as follows:

R
c’/sin’(kr—l—;-+m)dr=c'-2&= 1 (5.65b)
0

thus evaluating c. We now let:

A'o'n '
Py = =22

(5.66)

If we multiply Eq. (5.66), the relative transition probability, by Eq. (5.62), the level density, in which
we neglect n; as small, we obtain: '

A i
P - 2R » X
Em R Kf ‘/2——E, (5.67)

Eq. (5.67) gives us the probability distribution for the various energy changes. It is now of importance
to determine the statistical weight of an initial state E, I

Let p be the closest distance of approach of a broadening atom. Classically then our angular momentum
at closest approach, where [r X v| = |r||v|, will be given by Y2u E; p, and the quantum equivalent

B
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Vig +1) ﬁ.‘ If we equate, square, and differentiate these two expressions for the angular momentum,
we obtain:

h* (2l 4 1) dl = 2uE; - 2pdp (5.68)

The Maxwell-Boltzmann distribution yields as the number of disturbers whose energy lies between
Eand E + dE:
vE
Ng=N ~EAT dE .
== Ny ¢ .0

where N = N,/V. We now desire the number of perturbing atoms of the above mentioned energy whose
angular momentum is between \/2713' p and \/275-.'- (o + dp). Consider Fig. 5.8.

In Fig. (5.8) the emitter is at 0. dQ is a solid angle and dV = r'drdQ is a volume element, a distance r
from the emitter. Then the number of molecules of energy between E and E + dE in this volume element
is NgridrdQ?. Now the number of molecules in this volume element of optical collision diameter between
p and p + dp — that is, the number which will pass the emitter with separation between p and p + dp —
2xpdp. We inte

r’dQ
obtain the number of molecules in this volume element which are moving inward with impact parameters
between p and p + dp as NgridrdQ 2xp dp/4xr*. Jablonski used this value for N in his first paper™ while
he felt later ® that he should have utilized twice this value since there will be an equal number moving
outward. In following the development of the first paper we shall make this correction.

We then obtain from Eq. (5.69):

is the fraction grate the latter denominator for agreement with the Jablonski result to

p
Nap= N = gm e~®AT 2% dpdy (5.70)

Eq. (5.70) is now integrated over the entire volume of the container with the exception of a small
excluding sphere of radius r’( ~ 1077 cm.). The result of this integration is (R — +’), and we simply drop
r’ as small. Substitution for pdp from Eq. (5.68) into this result yields:

E+an
HM @ +1)
mazam, = *N i/ («kT)*3 udE— # RIE (5.71)
Eq. (5.71) gives the number of broadeners whose energy lies between E and E + AE and whose angular
momentum quantum number is [ or the statistical weight of £; in Eq. (5.67). Eq. (5.71) then gives us
the number of factors in:

N N
1‘1 Pypan= I‘l Pigyi(E — E') (5.64)

Let us neglect consideration of the restrictions which we must impose on Eq. (5.71) temporarily. We
divide the terms in Eq. (5.64) into groups, each group having the same I and energies restricted to a small
range AE. Now the distribution of the total energy change in each group may be computed, and as a
result the distribution corresponding to all E, I groups may be obtained.

* This ing of the tum and elassical : s ted on the ‘
oqu:.un(:i‘h”'mmm an‘nlu-mm.- predicated on the prepondersut importance of large
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5.11. A PARTICULAR PROBABILITY DISTRIBUTION
The following problem is posed: ‘“The probability distributions Pi(x,), Py(x2), . . . , Py,(xy,) of certain
quantities x;, %, . . - , Xy, being given, calculate the probability distribution of:*"

X= 2 x (5.72)

The “quantities” here are x; = E; — E;, and the method of solution of this problem will be taken

from a later paper of Jablonski.”
We assume that the P;(x;) are independent of each other in accordance with our earlier assumption

of independence of the broadening molecules. The form of the probability distribution P,(x;) is:
S Px)dx; = A”f (@ = &dlx;) + W(x)ldx; (5.73)

Eq. (5.73) is based on the assumption of a probability 1 — e for x; = 0%, and for x; » 0, the probability
of x; being within Ax; is:
A{; W(x;)dx; = W(x;)Ax;

Also from Eq. (5.73), recalling the delta function behavior:

T Piwade; = 10 - 9s6e) + Wisilde; = 1

+o
so that: e = [ Wix))dx;
—00
We consider Py(x;) = Piy(x2) = ... = Py, (xy,), and we now desire:
A{ Pgy(X)dX (5.74)

where X is given by Eq. (5.72). In order to find Eq. (5.74) Jablonski essentially utilizes mathematical

indnction.
We assume the probability distribution of a sum of IV; ~ 1 quantities to be known:

Ni-1
Pigcom-n( 2 x;)
=

Then the probability distribution P(X) of the IV, quantities:

M Ni—-1}
X=Zx;= 2 x; + xy,
i=1 iml
is surely:
+®
Pgi(X) =_.£ Pig...m-1 (X = zn,) Py, (xy, )dzy, (5.75)t

Now let us return to Eq. (5.74). We let 7O (X) = W(x,) and A{ W™ (X)dX is the probability that

4o
* 3(x;) is the delta function where by definition [ 8(x;)dxs = 1.
-
t The x; have been assumed continuous with a range — ® to + ®.



115

the sum of m quantities, none of which vanish, lies between X and X + dX. Then in analogy to Eq. (5.75):

+-00
wm(X) = fWHD (X — 2D (x;)dx; (5.76)
or for the case N; = 2:
+00
woaX)= [ WX — x) WO (x,)dx; (5.77)

From Eqs. (5.75) and (5.77) and in analogy with Eq. (5.73) we obtain:

400
A.!; Pg (X)dX =A{ _j; P(X — x;)Py(x)dx,dX

400
= z‘:f F11l— 95X —x) + WOX — 2)llA ~ 98(x;) + WD(x)] dXdw;

.!; Pgy(X)dX = A),[ _}w [B(X — 2)8(x) (1 — &% + WX — x)8(x) (1 — ¢
+ 8(X — x)1 — oW P(x)) + WHX — )W V(x,)] dXdx;
= fs00a - o +(})wo0a - 9 + wem | ax (5.78)"
since? (X — x.)8(x,) (L — €&?]dx; = 8(X)(1 — ¢)? etc., again by virtue of the delta function definition.

We may repeat the procedure for successively higher values of IV; to obtain for V) quantities:

N
= — M 1 (m) — g¥i—m
LPuoax = ffioa - ov+3 (woma-ov-elax G

m
Jablonski’s inductive proof is completed by showing that Eq. (5.79a) holds for N; + 1 quantities. No
useful purpose would be served here by writing out this final phase of the proof.
For ¢ = 1, all the terms save the last in Eq. (5.79a) vanish, and for ¢ < 1 we obtain:
N
[P(X)dX = { [B(X)e"'N‘ + 2 ( 1) w™ (X)e"‘”"""] dX (5.79b)
AX A mel

Now let us consider more carefully what Eq. (5.79a) tells us about our atomic system.
To begin with {PE,,(X)JX is the probability distribution for the translational energy of the N; + 1
A

perturbers in the E,! group plus the radiator, and [ W(x,)dx; is the probability of a change, x; = E/ — E,
Az

in the energy of the i-th perturber. We next consider the various terms in the bracketed integrand. The
first term is the probability for no translational energy change in the system; the first term in the sum
gives the contribution to the probability distribution of a collision of one perturber with the emitter (two
body collision), the second term the contribution by a three body collision, etc.}

* The symbol (") is generally defined n—--—”-!—- ] in(:) .
m

a
miln —m)!}

t In his first paper Jablonski™ obtained the equation corresponding to Eq. (5.79a) for the case Pi(x:) » Pyxa) o6 . ..
# Py,(xy,). Since, however, he only utilized the simpler form Eq. (5.79a), we do not reproduce it here,
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It now is necessary to construct P(X) for all l and all energy increments AE — we have obtained P, g (X)
for the various LAFE groups. The intensity distribution in an absorption line then becomes:

P(X) = I(¥w, + X) (5.80a)

and in an emission line:
P/(X) = I'(ffo, — X) (5.80b)

From the foregoing considerations we might have been led to expect the same intensity distribution*
in an absorption line as in an emission line, but this is not the case. Agp (X) is equal to Ay (—X) but
due to the different distributions of the energy of nuclear motion before and after collisions P(X) is only
approximately equal to P(—X).

In Eqgs. (5.80) w, denotes the frequency of the unperturbed spectral line.

This would appear to be an apropos point in the development for a resume of just what we have

obtained.

5.12. REVIEW OF THE JABLONSKI THEORY TO THIS POINT

After taking for our system a large “‘molecule” made up of IV, perturbers and an emitter (absorber)
restricted to a volume ¥V, we applied Condon’s first approximation to separate the electronic motion whose
state changes result in our radiation (absorption) from the nuclear motion (Approximation I). We further
considered the perturber motions to be independent of one another (Approximation II). Next Eq. (5.55)
was obtained for the eigenfunctions of this motion, and the overlap integral Eq. (5.57) resulted. This
overlap integral, as a result of the Condon approximation, yielded the selection rule I = I’ for the angular
momentum quantum number (Approximation III). From the asymptotic solution (Approximation IV)
to Eq. (5.56) we obtained the density of our nuclear energy states Eq. (5.62). As a result of Approximation
III the matrix element of a nuclear transition is given in terms of the radial eigenfunctions. The square
of the matrix element of a nuclear transition — and hence the probability of the transition — between
states n,l and n',l, we found as Eq. (5.66). As a result, the probability of an energy change E «<—— E’ was
found as Eq. (5.67), the product of Eq. (5.66) and Eq. (5.62), the nuclear state density. E; on the right of
Eq. (5.67) furnishes the basis for the difference in the absorption and emission lines as given by Eqs. (5.80).
It should be kept in mind that Eq. (5.67) is only the intensity or probability due to one perturber. We
next found Nz, (Eq. 5.70) the number of perturbers with energy between E and E + dE and angular
momentum between \/m and w/z_,,f(p + dp). In finding this density we assumed the equivalence of
classical and quantum angular momentum (Approximation V). We proceeded to find mz g iag) . the
number of disturbers with quantum number ! and energy between E and E + AE, the statistical weight
of E;in Eq. (5.67). This yielded the number of factors in the product Eq. (5.64). This product was divided
into E,l groups and Pg; (X) where X as given by Eq. (5.72) was determined from the P;g; (x;). From these
considerations we obtained Eq. (5.79a) for Pg; (X), and subsequently the intensity distribution in the
absorption and emission lines. An example might further clarify the meaning of the W™ (X). As we
have mentioned, the first term in the sum in Eq. (5.79a) is the probability distribution resulting from single
perturbing atom transits. This term is analogous to Eq. (5.67):

dn

WO(X) = WOE,— E,) = A’ggy dn.
(X) (E, ) Rt dE;m(E’E+m'l (5.81)

* Compare infra, Sec. 6.
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The evaluation of A*yz; , the square of the matrix element of the translational motion, now poses the
biggest problem. In his later papers ™ ™ on the subject Jablonski carried out a calculation which yielded
an approximation for thesc matrix elements.

5.13. LIMITING CASES AND THE MATRIX ELEMENT A

Before considering this approximate evaluation of 4, we might mention two limiting cases of the theory
which Jablonski’® pointed out. The theory will reduce to the limiting case of a distribution of the type*:

__ D¢
I(“’)w Ewo _/(Tw,)’

but with no “damping constant” — an additional term in the denominator which prohibits a complete
resonance condition — for small differences in the potential curves for the two electronic states involved
in the radiating transition.

The other limiting case which essentially corresponds to high densities, leads to the statistical distribu-
tion (occurrence distribution) smeared out, a conception which we have mentioned earlier but not enlarged
upon, with a half width:

(5.82)

6 =~ \|V— (5.83)

_1 lrt_lg (5.84)
TV dx
Let us now return to the evaluation of A4.

Jablonski evaluated 4, sometimes referred to as the “‘Condon integral,” in two papers’® ™, but, since

the second is the more comprehensive evaluation and differs only slightly from the first, we shall simply
consider it.

For the eigenfunction we take the WKB approximation for r > r; in the form given by Eq. (5.58)

with c as given by Eq. (5.65b). We must insert the additional normalization factor v Piio) = v 2uE,,.
The eigenfunction is then:

Vot =(§—)m[2 2uEny i 1)} { h f [2u<E,., — ) - wetD 1)]”2.1 + T}

w(En — V()

(21’;;2)) ) [7f P +1] (5.85)

2
Where, as has been previously noted, U(r) = }7'; V(r) and p(r) = \/ 2u(Ey — V(r)) — i +r’1)

p(r) is, of course, the radial component of the relative linear momentum. The phase T has already arisen

* See infra, Chap, 6.
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in the solution of Eq. (5.56b). If we let r, be the classical turning point or reversal point where p(r) =0
then Eq. (5.85) is only valid for r > ry = r,.*
By utilizing Eq. (5.85) we may form the matrix element:

Ay = f i Vo dr = 2 f ( '(,z:)))m [ / ‘) g 4 r']( ",(,E”)) P [ f P°C) gy e -ldr

R

=%[(ml(:r;§::zs ))l/2 [cos (/p________’(r) ] P’ ar+ 1 — )

+cos(;‘/'}—”-(r)—-;ll(—rldr+ T 4 T")]dr (5.86)

In Eq. (5.86) a single prime denotes a quantity going with one of the electronic states and a double
prime a quantity going with the other.

Since the sums involved in the second cosine term in Eq. (5.86) will increase or decrease more rapidly
than the differences involved in the first cosine term, the second term will fluctuate much more rapidly
than the first with r. Thus, the contribution of the second cosine term to the integral in Eq. (5.86) will
be much less in the region of maximum contribution of both terms. On this basis, Jablonski considered
only the first. It may also be seen that the region of maximum contribution of this first term is the neigh-
borhood of the so-called “Condon point™ where p’(r,) = p"'(r.).t

It follows immediately that (4,,)? “...is the probability of change of translational energy by
X = E, — E,» equal to that resulting from the classical FCP for the transition in r,’:"

= V() = V"(r) = flws — @) = hw

'We now break up the integral within the cosine from one with Jimits r, and r into one with limits r,
and r, and another with limits r, and . The second of these two integrals may be expanded in a Taylor
series about r, in a straightforward manner to yield:

R fo

o = L[ [P(2)p"() T {1 ‘) — o —

Aywn R/_ @ ] cos 7fp(r) pPDdr+ 1 ~1
]

+ 717 f [ p0) - ) + [ L0 - 20 )1_5: ~rtoJur} 5.87)

If all terms beyond the second in the series be now neglected; r — r, be replaced by £, and the approxi-

* “The difficulty arising from the failure of the KB approximation in the region of the point of closest approach of
the colliding atoms (classical turning pomt) is not surmounted by Weisskopf’s treatment, but merely completely camouflaged.”?

t This nomenclature has its origin in the “classical” conception of the FCP wl\ere it is assumed that the relative nuclear
wvelocities remain constant during an electronic transition.
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mation p'(r) = p’ '(r) = p(r.) be made in the denominator of the factor in front of the cosine,* Eq. (5.87)
becomes: )

Ay = ()PP / cos (a & gyt = /(22 (ﬂ) co,,( ak _,_) (5.88)t

Rp(r) Rp(r.) 4
where: a= -/—‘- [p’ " —-p'M)dr+ 7 -1 (5.89a)
i _, e
11d ’ ” 1 dr
and: p-ml 2o - rel| =of
dr z
¥ - ¥ [ 2@ - ey - pHE D]

- (+ ) [ 20t - 7)) - 5’—1‘-1—’]"’_; L PO

where U(r) = X = V'(r) — V"' (r).

We may first note that the term p’(r,) — p’’(r,) in Eq. (5.87) is zero by definition. B¢ results from
the first integration, since (r — r,)% ..,. is obviously zero, thus simply leaving the upper limit of this integral.
In addition, an obvious approximation has been made in Eq. (5.88) by taking the limits — « and+ .
Extending the limits in this manner is predicated on the assumption that the integrand only contributes
significantly to the integral in the region r = r..

Substitution of Eq. (5.89b) into Eq. (5.88) yields:

Appn = Ax R(_ﬁfl) cos(a ii)=%<%lnm(ai-:—) (5.90)

r="re

Eq. (5.90) is an approximation to the matrix element which we have been seeking. Before further
utilization of Eq. (5.90), let us consider the additional ramifications of the earlier theory which Jablonski™
introduced in 1945.

5.14. THE GENERAL SYSTEM ENERGY CHANGE PROBABILITY

It will perhaps be most straightforward to simply replace Eq. (5.81) by:

: u nn'l dn’ fmax Dn "7 dn
WOX) = WOE, ~ Ep) = 3 Q05— 75— / oh =5~ 75 d (591)
=0 z D’,‘ It

n'=l

’
and explain the reason for so doing. D?,.,; is defined as before by Eq. (5.47), and :g
“I
density which we have also previously encountered. Q(l) is the probability of occurrence of a certain !

which replaced the statistical weight found earlier. The approximation of a high ! density has been made

is the energy level

* Jablonski’® refers to this approximation as crude. The approximation appears to get “cruder™ the closer r, lies to r,.
1 In his earlier paper ' Jablonski had defined § as an absolute value so that there was every reason for taking =g,
In the later paper ™ he kept the « signs but failed to define 5 as an absolute value. This, of course, was not correct.
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so that the summation may be replaced by the integration. If a single prime is taken to mean the upper
) d’.l dull
&, IEy

Now if Eq. (5.91) were substituted into Eq. (5.79a) or (5.79b), the intensity distribution (normalized
to unity) in the spectral line — natural and Doppler widths neglected — would be obtained. Needless to
remark, this has not been done. The Condon approximation yields:

state, Eq. (5.91) refers to an absorption line. The emission line would replace

S = Mo’,‘ Dn’n”l = MOAn"."l
and Eq. (5.91) may be written:
'm
W dn’
7O+ [ QA o
(1]

”l

d (5.92)

where :F" is given by Eq. (5.62), and A, is given by Eq. (5.90). Q(l), bowever, remains to be determined.

Q(l) is certainly proportional to the statistical weight due to the spatial degeneracy (m;) of the state I;

Q) = g2l + 1) - (5.93)
On the basis used for obtaining Eq. (5.68),
p = hIQ + 1)/24E]*? (5.94)
and Qdl = Q'(p)dp (5.95)

for large I.

In Fig. (5.9), one-half the molecules may be considered as moving toward (or acroes) the plane A—A4
from the left, while the remainder proceed toward the plane from the right. The probability, that a collision
of optical collision diameter p between p and p+ dp occurs, is thus the volume of the tube shell of thickness dp
divided by the total volume available to the broadeners. This follows from the assumption of a random
distribution in space. We suppose the assemblage to be confined to a sphere of radius R. In consequence:

¢ (6)d oot _ od
p = ————— = — I'max PGP
%'I’R‘ R

Now by definition r = r,,, when 7/ = R so that:
Q)de = 2 (B — 0 ol (5.968)
or for the case under consideration p <K R so that:
3 3
¢ (p)dp R,pdp T () (5.96b)
By substituting from Eq. (5.94) for p in Eq. (5.96b) we obtain:

3h?
Q’(P)dp = m @+ l)dl
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Now using Eq. (5.95) this yields:
Qe -—y‘—m E @+1) ’ | (5.97)

For convenience, we rewrite Eq. (5.62) slightly, recalling that the equation was obtained for r = R,
to obtain:
dn _ _WYR_ R
dE, = HRE)™ " ajfpa() (5.62)

If Egs. (5.97), (5.62), and (5.90) are substituted into Eq. (5.92) the desired expression for the case
of an absorption line is:

)

oy = [ 3 M QL+ DuRp'(w0)p”(0)  20) x

W (X) 6/ 4 R’HE”II‘ 7””(“)R’P’(rc) "’d—-x cos’(a =+ 4)a+ t(x+ l‘)
dr

P m=re

_3_ M A 2014 1) 2 cost (a x/4)
4 ugr] % f(l V) _ AT DY 4+ 1n .
" rmr, 0 Eyy 2uEyrg
" 1/3
where p'(x) = . (2sEp) = 1
p(ro [ e ) — a0+ 1)]"’ ( _ V') _ 4K+ DY
20 (Ewa = V7)) - =2 1= e AT
At the classical turning point the following relation holds:
20 [Evu— 7] - D~ ey ~ 0 (5.99)

From Eq. (5.99) we may obtain:

_ V') _M+ 1)
! En"l‘ 2”"En"l (5.100)

When Eq. (5.100) is substituted into the denominator under the integral sign in Eq. (5.98) the result is:

rp (1 —K'E"L"sl)m S+ )2 cos’(a + %)

> e dl + F(XJ) (5100
L6+ e [2X [1- B0 ]
P dr L+ 1)

The £(X,,) is a correction term which is added due to the choice of upper limit [, < l,, This upper
limit must be lese than J, since the WKB approximation fails in the region of the classical turning point,
and {(X},) is then to correct for this low limit choice. “The more accurate calculations involving eigen-
functions valid in the regions of turning points and outside the classical range of motion would be very
tedious unless carried out by the aid of the differential analyzer.””

wom =3

rmr, O



122

If| X| = | Ey — E,»| is large enough, that is, if we are considering frequencies sufficiently far out

in the wing of the line then cos | « =+ -E is a rapidly oscillating function of J, as we may see from Eq. (5.88)
and Eq. (5.89a). In this case we may replace cos (a :i:%) by its average value —21—- Eq. (5.101) then

becomes:

o (1= LY

3 En" 2l + 1
wO(X) = 1 o m 5% [1 G+ D iz dl + (X
e+ DRSS “t.(l‘+1)]
3 ( V"(r,))””[ ( L+ 1))”2]
_ y 1 1- (1-b&+1D) X, 5.102
2] E,. L+ /) Jt IR 10
dr lr=r,

for an absorption line. We simply replace the double prime by a prime in Eq. (5.102) for the emission line.

The asymptotic form (}, = I for WD (X) is:

bt ’ " !/
W(l) (X) = 3'0’(1R' ;(rc)/Eu ) 2
B

(5.103)

r=re
and corresponding for an emission line.

Next, let us show that Eq. (5.103) reduces to Kuhn’s distribution® — Margenau’s distribution without
the exponential — for certain interactions. Before doing so, however, let us mention a consideration which
~e have so far neglected.

5.15. DOUBLE INTERACTION CURVES AND REDUCTION TO THE MARGENAU LINE SHAPE

It has been tacitly assumed that there is one interaction curve for the upper electronic state and one
for the lower. This is not generally the case, for there may well be several interaction curves for each
electronic state, and for single encounters we would then have various W;("’ (X) for the various pairs of
curves. Our W® (X) would then have the form:

WO (X) = al,P(X) + a, W,V (X) +- .. =Za, WP (X) (5.104)

(13

where a; would denote the
curves . . .”" with which ;" (X) is associated. It is also apparent that, since 4, or D, would be
different for each W;® (X), each 4, would have to comprise a separate calculation for each W, (X).
When one considers that we have here discussed only single encounters, the complexity of the accurate
computation for multiple collisions appears rather staggering. Let us return to the limiting case of Kubn’s
(Margenau’s) distribution.

According to the classical FCP:

X = V) = V') = Mo — ) = Mo

. .. relative abundance of transitions between two particular potential
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4
From this equation Aw = f(r,) so that r, = f(Aw). Letn = 3 xR!N. Utilizing these relations and Egs.
(5.103) and (5.104) we obtain for an absorption line:
Vn('. ))
1 -2
( E’l"

—]@)—\— (5.105)
dr,

We now make the approximation E = ng, although I(w) should be averaged over all E which occur

I(w) = Za; 4xNf(Aw)

in the gas. Finally, an assumption of one electronic curve for each electronic state is introduced. We let:

Vi) = =S ; Vi) = =% (5.106)
r, re
so that:
N/ K\ ¢
o = g T = e ) = (E) i ved =% s (5.107
-] L]

Substitution of Eq. (5.107) into Eq. (5.105) yields:

3/ (
L) = 2xNK" ( 2c’Aw)

ﬂ(Aw)("+3)/"

.
SKRT (5.108)

which corresponds to the Kuhn form for 2¢"’Aw/(3KkT) < 1. The agreement of this limiting form of the
theory with the earlier work of Kuhn;* and Margenau' would tend to imply a corroboration of either this
theory or one of the earlier ones depending, of course, on who is pointing out the corroboration.

As Foley?®® has remarked, the divergence of the intensity at line center as given by Eq. (5.108) should
bardly come as a surprise when the method of obtaining this equation is considered. The reason for the
divergence lies in the fact that the perturber will only spend an infinitesimal portion of its time within the
range of the forces, for the case of a large combining volume, when only a single perturbing atom has been
initially considered, and then the resulting expression averaged over all possible transitions. This fact
results in an infinite probability for the unperturhed line center frequency. The argument is without any
particular significance, however, as far as line wing theory validity is concerned.

Insofar as it has been possible to ascertain, this is as far as Jablonski has carried his quantum mechanical
broadening theory. Our only concrete results are then given by Eq. (5.108) which had already been given
by Margenau'’s statistical theory (or Kuhn’s if you will) with the exception of the small factor in the bracket.
This is only a limiting case of the wave mechanical theory and serves no immediately apparent purpose
save the wave mechanical verification of the statistical theory. Before a further discussion of this theory,
let us review the approximations which we have made in addition to those listed before Eq. (5.81).

* This differs by a factor two from that obtained by Jablonski in an earlier paper.”® Since the calculation is in principle

the same but in actuality somewhat different — for example, he obtained ;l(_ % cos\ & * i- in the previous paper in place
of Eq. (5.88) — we shall not go into the detail of this difference. The approximate derivation which we have given here would
sppear to be the better of the two,
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516 THE APPROXIMATIONS OF THE JABLONSKI THEORY*

First, let us mention that we have improved A'pproximation V. Eq. (5.95) certainly holds for very
large I. Thus, if we obtain it as we did we should have an approximation for Q(I) which is very close to
the true state of affairs.

We have replaced our previous Approximation IV by one in which we assume the W KB approximate
eigenfunction (Approximation IV). The second term in the integral of Eq. (5.86) has been neglected
(Approximation VI). We have neglected all terms beyond the second in the series in Eq. (5.87) (Approxi-
mation VII). It was then assumed that p’ (r) = p”’ (r) = p (r.) in thedenominator of Eq. (5.87) (Approxi-
mation VIII). The limitsin Eq. (5.88) have been extended from 0 and R to —< and + © (Approximation
IX). The approximation of Eq. (5.91) — replacing the summation over I by an integration — is probably
a trivial one in most cases (Approximation X). Eq. (5.62) is an approximation, but perhaps one of the
closest ones (Approximation XI). The limits on Eq. (5.98) are, of course, an approximation, but this one

is such a direct result of IV that it may well be included in it. We replaced cos?{ a - %—)by its average

value (Approximation XII). The obvious approximations resulting in Eqgs. (5.103) and (5.108) need not
be discussed. We should add, however, that without additional approximations it is apparent that no
actual line intensity distribution can be obtained for the case of several potential curves for each state —
Za; W (X) instead of simply #;" (X) — and multiple collisions.

As a result of the approximations which have been introduced, we are left with Eq. (5.103) which is
only (a) valid in the wing of the line and (b) valid for heavy broadeners. In addition, no information has
been afforded about line shift.

Approximation IV is a serious limitation, but one the alternative to which would be the specific and
extensive use of some computing device. As a direct result of this approximation, the asymptotic form
Eq. (5.103) of W(X) is larger than the true W (X). The reason for this becomes apparent when we
recall that the WKB eigenfunctions and hence the A%, become infinite for [ = [, that is, at the classical
turning point. These considerations have the direct effcct of making the asymptotic intensity distribution
inapplicable to the case of broadening by light particles. Let us investigate the reason for this.

It can be shownt that in order for the WKB approximation to be valid,

Al = (1 _1)»[5_@5;12]1’3
¢ 2l + 1

Table 5.1 gives the values of [, and « for the broadening of Hg lines by 4 and He.

= «(ly) (5.109)**

T 1000 K 300 K
Perturber

A 158 2.7 86 23

He 25 1.5 14 1.2

Table 5.1.  Values of I; and K corresponding to ro = 3.34 for Hg-A and Hg-He.
(After Jablonski’*)

* See supra, Sec. 5.12,

t An attempt to avoid this phrase has been made, but the calculation which would be involved is not particularly
enlightening.

** In Jablonski’s article”™ the exponent is given as 3/2instead of 2/3, but his table — corresponding to our Table 5.1 —
affirms this to be a misprint.
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From Table 5.1 we can see that we are restricted to very low values of I, where I, = [, — Al if we
assume Eq. (5.109) to be satisfied by, say, Al > 10KI, and in the case of 300°K the limits on our integral
would be 0 and 2. From these considerations the necessity for restricting Eq. (5.103) to heavy broadeners
becomes immediately apparent. Another approximation which we have made tends to lead to the same
result.

In order to make Approximation VI it was necessary for us to assume that there is only a noticeable
contribution to Eq. (5.86) in the region of the Condon point. This is the same approximation which earlier
had restricted the statistical theory to heavy particles (low velocities) by neglecting the intrinsic diffuse-
ness in r,.

Now let us consider Approximation IX. It is essentially predicated on the assumption of a maximum
contribution to the integral for 4 in the neighborhood of the Condon point. If this is the case we may,
with the introduction of small error, extend these limits as has been done. In addition, this mesns that
the phase of the cosine term must increase by at least x as ¢ increases from 0 to r. This would automati-
cally require that fr,2 > which yields:

2'%("0) 1/3
re> ( u aX ) (5.110a)
dr r.r,

or for |X| = RK/r*
oKy \1/0-D
e < (z"“,po,)) (5.1106)

Eq. (5.110a) essentially restricts the validity of our solution to the wing where the frequency displace
ment is relatively large, due to the restrictions imposed by this equation against distant encounters. We
might add that Approximation XII also restricts our solution to the line wing.

Jablonski’s theory, in its present form, cannot then be said to give any new results insofar as the shape
which we are to expect in a spectral line is concerned, but it certainly does provide at least the basis for a
complete wave mechanical theory of line broadening. Perhaps the exact calculation of the A's or some
not immediately apparent approximations will draw more information from it.

517. A MILD CONTROVERSY, LORENTZ.-JABLONSKI EQUIVALENCE

Subsequent developments found Foley"’ investigating the manner in which Jablonski’s theory could
be shown to lead to a Lorents type intensity distribution and Jablonski® objecting to certain of Foley’s
demonstrations and concluding that, “One has cither to demonstrate rigorously that the Lorents formula
can be obtained from the quantum mechanical theory proposed by the writer or to modify (or to reject)
one of these theories.””® We shall consider this in slightly greater detail.

Initially, Foley remarked that the overlap integral which Jablonski utilised may he written, wsing
WKB functions, as:

Re R
1 1 7 ’
) / dR m{’(. of [P(R) — p'(R)}dR + 7 — ¢ } (5.111a)*

* Let us note that this is the less exact form which Jablonski utilised in an easlier consideration.” The more exact ferm
is, of course, given by Eq. (5.86) from a later work.
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. Eq, (5.111a) indicates that Foley had already inferred the approximation which negated the second
term on the.right of Eq. (5.86). Foley next wrote down:

/ ) ws{/ = p(gf(R) dR} (5.111b)

‘I order t¢ dbtain ‘this, let us again consider Eq. (5.86). Let us introduce the approximation which
weé utilized éhbéeqﬁent to Eq. (5.87), namely, p’(r) = p”(r) = p(r;). This leads us to:

RN O -
p'r—p'n = \/2;1(E' U(r)) — l_j;lzg \/2 (E" - U"(n) — _(_+_12‘_€

- - P(rc){ ’ / - 11 + 1)}‘6 - " __ I +1) }
L0 P\ BE — V) = S — B - U )+ N
= 9, (AE = AU())

p()
This result, with the n’s dropped, gives us Eq. (5.111b) wherein the two is neglected. Now at the

boundary of the container p(R;) = \/ K2 — U(R) — (s ;21)
0

—K so that Eq. (5.60) becomes:
pR) - Ry, Ir

X 2

" Ro 7 n
PRy — p (Ro)17+ - =mw (5.112)

4 p=nr=%2n" 4 Dnr

in Foley notation so that:

Surely, the substitution

mdR mdR
) —

dt = — =
p(R) I+ DR
\/zm\/E UR T omR® (5.113)

may be utilized and, in addition, the approximationt I(I + 1) = m?%?’ may be introduced to change the
integral within the braces in Eq. (5.111b) to:

R T,
-‘:‘:f(AE—AU)dR$ Ef(AE-AU)dR =2 A""T.—z aU g -

LT K X AKX

at the boundary according to Eq. (5.112) when Tv = R,. Or:

Ts
: AU
ZM;T{ - 26/-—,-;'& = mx (5,114&)“

* Foley used I instead of I(I 4 1), but this is of no particular import.
t See the discussion of this preceding Eq. (5.68).
** Foley lacked the factor two.
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where now the i refers to the i-th perturber. As a consequence Eq. (5.111b) becomes:

K3 ¢
o [aewa[as [0 a]
— dt; cos 2 wily — dt i (5-114b)
- 0 0

The similarity between Eq. (5.114b) and, say, Eq. (7.5a)* would indicate that under the proper
manipulations the Lorentz form could probably be obtained from tie former equation. Foley proceeds
to obtain this form; Jablonski proceeds to criticize the obtention;*® following which Foley continues to pro-
ceed, this time justifying it.*» Whether or not anything has been proven by this succession of events depends
primarily on the justifiability of the approximations involved. Now Foley essentially voiced the opinion
that Jablonski’s method of evaluating Eq. (5.111b) is only correct in the static or slow motion case. This
is as it may be, but Foley had to assume the Franck-Condon principle, a static affair, in order to obtain
Eq. (5.111b) in the first place (evidently). Jablonski’s theory breaks down (in the sense that generality
can no longer be maintained and the development continued) following Eq. (5.86). The flaw in the
Jablonski theory seems to lie, not in the fact that it is a special case of the Foley considerations,t but in
the obvious difficulties inherent in obtaining result‘p in any but the simplest cases — binary collisions and
Franck-Condon.

We now conclude our theoretical considerations of statistical broadening — except for equivalence and
reduction considerations in subsequent chapters — with Margenau’s latest investigation!'? in the field. The
advances which this work ’encompassed were threefold (1) the theory was broadened to allow almost any
interaction law dependent on some inverse power of the atomic separation, (2) forces which change sign
were allowed for by the introduction of a spin interaction, and (3) a more concise** and elegant development
was attained.

5.18, A MORE SOPHISTICATED STATISTICAL THEORY

Our basic theory remains, of course, the same, and we again begin by inquiring, as in, say, Eq. (5.22)
and subsequent, what the probability is that a configuration of perturbers will exist such that a change in
the energy perturbation of V' = ZV; between the two levels under consideration will result. This ¥ shift,
as we may recall, results in the emission of radiation which is shifted in frequency by this amount. We
suppose that the dependenceof ¥ on molecular separation will be of the form cr ™™, and now we augment this

potential with a spin interaction (separable) u(£). Thus there results:
Vi=1cr;""u (§) (5.115a)
Firstly, the function u(¢;) must vanish in the mean. On this basis Margenau chose for u(¢;):

— lfor§; < 0,

B8 = | ltorg, >0

-1<t<1 (5.115b)

which may lead to different numerical factors than would the accurate spin function, but nothing else.

* See infra.
t See infra, Chap. 6.
** This conciseness can be carried too far.
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On a random basis the occupation probability for r, where % » R'is the volume occupied by the gas,

is:
v _ renddddedr g 3 g, (5.116a)
v 4 R
—= R}
3
and in like manner for the spin:
d _d
p®dt= T = ?E = }d¢ (5.116b)

Now we have the requisite elements for the determination of W, (V), the probability that with n per-
turbers present the shift at the emitter will amount to V. In complete analogy to Eq. (4.13) and the reason-
ing which led to it, we may obtain:

+m
W, (V) = 51; / e A, (s) ds (5.117a)
where: A, (s) ={ fpwydt fp(rydrespisc ™u ()] }" (5.117b)

Since such complete analogy has been claimed, two differences in factors should be explained. We

3
have —2-1- occurring in Eq. (5.117a) instead of <—21——> as in Eq. (4.13), since only one Dirichlet factor of
T~ X

the form Eq. (4.10) has been introduced. Also -;,7‘ fails to appear in Eq. (5.117a) since its equivalent is

contained in p(r)p(£).
Using no subterfuge whatever, Eq. (5.117b) may be rewritten as:

A, (s) = [1 — 3B (s)/2R%]" (5.118a)
11
where: B(s) = de([{l ~ exp [iser ™ u(f)]}r2dr (5.118b)
!

Eq. (5.118a) may surely be expanded according to the binomial theorem. In the result we allow R

. P . 4 .
to approach infinity which in turn means n approaches infinity, since n = 3 = R®)N. This converts our

binomial expansion into the infinite MacLaurin series for:

A(s) = exp[ — 2xNB (s)] (5.118c)
8o that our Eq. (5.117a) becomes:

-+
Wy = L / exp [ — isV — 2xNB (3)] ds (5.119)
2x
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Next, Eq. (5.118b) may be integrated over £ so that:

+o
B(s) = 2 6f (1 ~ cos sv)ridr (5.120a)
where: v=oc™" (5.120b)
If we let, sv=t (5.120¢)

B may be written as:
«®
B = %(c]sl)s/m/(l — cos t)d(t'a/"‘)
0

2 3/m)| ,-3/m i/ . ~3/m _s
= 3 (cls)) t (1 — cost) ',—a/m W t gin ¢ dt
“ 0
= %(cm)s/ m f ¢7%/™ gin ¢ de (5.121)

0

where integration by parts has been utilized and ’'Hospital’s rule applied. This application of 1’'Hospital’s
rule results in the restriction of m such that m > % This is actually no restriction on the theory, since

none of our interaction laws will require a value of less than 3/2.
For convenience, let:

7;_403/»; ft"sl"‘ gin tdt = g, (5.122a)
0
so that: 2rB(s) = gnls|*™ (5.122b)

Our probability W (V) is a real affair, and the utilization of this reality and Eq. (5.122b) in Eq. (5.119)
yields:

4o ®

wy) = z—l—fexp [— Ngns*™ cos (sV)ds = l_/exp [— Ng,s*’™ 1 cos (sV)ds (5.123)

*

™ s

since the integrand is an even function.
By evaluating Eq. (5.123) for the case V' = 0 (no shift)

1
w(0) = ﬂr(T) — 5.124
© 3 \3/(Ng,)™"® ( )

Margenau demonstrates the interesting result that the line center intensity decreases as N ™2,
If we define a function I,, as,

I(X) = j exp [ - (%)3/"] cos u du (5.125a)
4]
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then Eq. (5.123) may quite readily be written as:

1 V
wy) = ;—ﬁ}—llm <—I’To> (5.125b)
where: Vo = (Ngw™? (5.125¢)

All of which leads us to the departure point of special cases, and, with Margeneau, we shall consider
three, namely, broadening by (1) permanent dipoles, (2) quadrupoles, and (3) forces which do not change
gign.

In the dipole case we have m = 3* so that from Eqs. (5.125¢), (5.122), and (5.125a):

2 x
Vo = =#*Ne; Ii(X) =
r =y ) =
go that Eq. (5.125b) becomes:

Vo
Wy = —21 5.126
( 1r(V2 + Voz) ( a)
or, when we recall that V' = /((wo - w):
W(w) = Vo/ ok (5.126b)

(wo — w)? + Voz/}t{

This is of some interest, since it is the Michelson-Lorentz or dispersion form of the line shape.f

A consideration of Eq. (5.122a) and Eq. (5.125a) should suffice to justify the statement that numerical
calculations or series expansions are requisite for the evaluation of the integrals in these equations for other
values of m. Margenau has carried out this numerical evaluation for the quadrupole case, m = 5, and the

resulting curve L) is compared to the one for the dipole in Fig. (5.10).
x

Let us note the symmetry which is displayed by the two line representations of Fig. (5.10) which we
have not previously encountered in statistical broadening. The reason for this difference becomes clear
when we neglect sign change through spin interaction as we shall now proceed to do. If we simply let
u = 1 we obtain in place of Eq. (5.120a) the following:

B(s) =2 [ (1 — e *)rdr (5.127a)
0
from Eq. (5.118b) and
®
B(s) - — i§(0|81)3/m ft‘a/"'e"‘dz =g= 81 + ig" (5.1271))
0

as in Eq. (5.121).
Then from Eqs. (5.127) and (5.119) we obtain as the form of the intensity (probability) distribution:

400
wwy) = gf; _fw exp (— Ng's¥’™) cos (Vs + Ng's*'™) ds (5.128)

* See supra, Eq. (5.3).
t See supra, Chap. 1 and infra, Chap. 6.
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Eq. (5.128), of course, will lead us to the type of results we have obtained earlier for van der Waals
force, as an example of the same sign forces.
In the case of van der Waals interaction m = 6 so that:

¢ = - g =Levaec
and, ergo, Eq. (5.41).
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molecules having energies E to E + dE and optical collision diameters o to o +dp.
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CHAPTER 6
INTERRUPTION BROADENING

We shall now deal with what amounts to a different approach to the question of the broadening of a
spectral line by molecules of a type different from the emitter (absorber). In actuality, we shall find that
we are not really dealing with a different phenomenon, but rather a different mathematical approach to the
same phenomenon. No matter what approach to the problem of broadening by foreign gas atoms we may
take, the basic phenomenon that causes this broadening is some sort of perturbing influence which arises
from an interaction between broadener and emitter and which causes some usually time dependent dis-
tortion of the two energy levels between which the radiating transition takes place. We have considered
several different attempts to mathematically describe the results of this interaction, and we shall now turn
to the consideration of still another.

6.1. THE LENZ APPEAL TO CORBRESPONDENCES

In 1924 Lenz®® began what may be considered a post-quantum mechanical continuation of the work of
Michelson and Lorentz on “‘pressure” broadening.* As we shall see, this work as well as a comfortable
majority of the succeeding work on Interruption broadening consisted largely in attempts at quantum
mechanical justification of the classical approach utilized. This article paved the way to a fertile field of
disagreement.

We begin, with Lenz, by considering two types of molecular interaction which lead to a broadening
of the spectral line:

(1) An interaction of a type such that all energy is radiated, that is, none of the radiation energy is
transformed into translational energy of the molecules. The Stark effect due to the external fields of the
surrounding atoms is an example of this type.

(2) A collision of the second kind in which excitation energy is completely transformed into transla-
tional energy.

In the quantum mechanical case of a radiating gas, a certain percentage of the atoms present undergo
radiating transitions. The remainder of the excited atoms lose their excitation energy not by a radiating
transition, but by a collision in which the excitation energy is transformed into translational energy.f On
the other hand, a classical oscillator radiates a portion of its energy and loses the rest on collision. Lenz
appeals to the Bohr correspondence principle to equate the overall amounts of scattered and heat converted
energy in the two cases. We may obtain the desired amount of heat transformed energy in the classical
case by a suitable selection of molecular diameter. It is apparent that we could obtain this amount by
adjusting the molecular diameter to yield the required collision frequency. Now under these conditions we
consider a collision to have occurred when two molecular centers have approached each other to within this
adjusted molecular diameter. It may then be assumed that the wave train which is being emitted is cut off
at the collision. Then as in the Lorentz case a broadening which is proportional to the density results.

These considerations were essentially based on type (2) interactions. Lenz then advanced the hypothesis

* See supra, Chap. 1.

t This *black or white” assumption does not allow for the case of radiation with partial transformation to translational
energy which we have previously considered (Chapter 5), but this is a minor point at this stage.

132
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that type (1) interactions would yield the same result. Let us now consider the type (1) interactions from
the Lenz point of view.

The assumption is first made that outside a certain minimum separation of the two atoms, the field of
one atom* produces no Stark frequency perturbing effect on the emitter. At this minimum separation,
however, the frequency of the emitted radiation is instantaneously disturbed by a large amount. Let us
further call the occurrence of this closest approach an optical collision. Then, between two such collisions
the atom will radiate undisturbed. During the short time of the optical collision on the other hand — that
is, during the time during which the broadener is separated from the emitter by the amount or less than the
amount of this minimum separation — radiation of a very different frequency is emitted. We simply neglect
this “‘undefined emission™ during collision, and assume that radiation ceases at collision and commenoes
again after collision. Thus, we obtain the same type situation as that with which we have already dealt.
Again a series of wave trains of length dependent on the time between collisions is emitted. According to
this theory, the force laws which govern the interaction between emitter and broadener are of no specific
importance. We must again — as in type (2) collisions — appeal to the Bohr correspondence principle for
justification of our considerations.

This, in essence, is the theory that Lenz proposed, and it might be noted that it is more a justification
for Michelson’s treatment of pressure broadening than for Lorentz’s, at least insofar as the computational
portion of it is concerned.

Let us then replace our radiating atom by a classical oscillator. An equivalent form of Eq. (1.6b)
gives for the amplitude:

/2

J(») = const / em " dp = const sin x (w — ¥)r 61)
x(vo — ¥)
~1/2

The square of Eq. (6.1) would yield Eq. (1.12). If the square of this equation is averaged over all collision
times, where the probability of a collision time between 7 and  + dr is given by f(r)dr as in Eq. (1.56)
the result is:

[}

I(») = const / Sili_[f_(ﬂﬂ__—_”lﬂ dre™""™ = const (1/2e) 6.2)
n2(yp — »)? (vo — ¥)? + (1/2”;)2

0

Eq. (6.2) is, of course, equivalent to Eq. (1.78). The proportionality between the pressure and the half-

width is apparent from Eq. (6.2) through the inverse proportionality between mean time between collisions,
0, and half-width.

6.2. THE PHASE SHIFT DEFINITION OF A COLLISION AND HALF-WIDTH

Weisskopf first attacked the problem of Interruption broadening by foreign gas atoms in 1932.'% In

this paper he also discussed the case of broadening by like molecules.t He, too, considered the radiating
molecule as replaced by a classical oscillator.

* We could theoretically extend these considerations to an emitter and several broadeners which would, of course, be the

case for multiple collisions. A single broadener, however, offers a conceptually convenient method of consideration.
1 See infra, Chap. 7.
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Let us assume that w(t) is the natural frequency of this oscillator as a function of time. wo(t) is a con-
stant during the so-called transit time — the time interval between two optical collisions. wo(t) changes,
however, during what Weisskopf considered the very short time of the collision. Let us develop a slightly
more general equation than we would need for this case.

The varying electric dipole moment* of the oscillator is for this case:

M) = AQ®) exp [i bf wo (7) dr] 6.3)
The Fourier integral of Eq. (6.3) is then:
M@ = _ij (w) €™ dw (6.4)
so that the amplitude is given by
J(w) = zM(t) e~ d =jf:A ) exp {i [ J.‘wo (rydr — wt])de (6.5a)
Weisskopf gave this equation as:
J() = const [ exp [i j wo(r)dr — it] de (6.5b)

The intensity distribution in the spectral line would then be given by the absolute square of Eq. (6.5b).

As Lenz had previously done, Weisskopf considered w(t) a constant during the transit time and com-
pletely neglected the behavior during the short time of the collision itself. Now let us consider again Lenz’s
type (1) broadening,.

An interaction between broadener and emitter exists such that the frequency of the oscillator is shifted
by A(r) where r is the emitter-broadener separation. It then follows that the phase shift in the undisturbed

frequency during the optical collision is given by:

0 = gg A(r)de (6.6)

Here t, the upper limit of the integral, is the time of collision.

When O has attained some value or other, an optical collision is assumed to have taken place, that is,
we consider one wave train as terminated, and another completely independent wave train as initiated.
Weisskopf arbitrarily assumes a value of & ~ 1 for the phase shift required for the definition of an optical
collision.

In order to qualitatively justify this assumption, let o be the separation at closest approach of the two
molecules and v their relative velocity and write:

r=\”‘r|2= V<> e+ r2+ 2 vt = V<E>E2 + ot

since 1y is perpendicular to v.
Thus, Eq. (6.6) becomes:

4w
0= fa(Voer £ r) de 6.7)

* In Chap. 1 we considered the vibration of the photoelectron (Lorentz theory). Essentially, this amounts to the same
thing. When this electron vibrates, it causes the noted variation in the dipole moment.
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Weisskopf used the mean relative velocity squared here <v>? while Margenau and Watson?* used the

mean square relative velocity <v?>. Asis well known, these two quantities differ by a factor 3%

Now Weisskopf assumed an interaction A(r) = €/r® where C is given by a;asV. «; and ay are the
polarizabilities of the emitter and the broadener, respectively. From the Stark effect of the Na-D lines

he took a; = 9.5 X 107, and he assumed a; = 10~?%, Finally, ¥ was taken as four volts. If we lot x = hd

P
we may rewrite Eq. (6.7) as:
+oo
6 = = 1 6.8)*
f (”2‘ -/(x’+1)' (68)
—w o?
where the assumption that 6 = 1 determines an optical collision has been introduced. From Eq. (6.8)
we may obtain for p:
e=J ( _C_)l/5 (6.9)t
v

+
where — dx )1/5 - (?_1:)”5 =1
=(Jatw) -G

Finally, for a temperature 500 and for values of the constants as given above Weisskopf obtained an
optical collision.diameter p = 6.8A for the Na-D lines for © = 1 which he considered a “plausible value.”
Actually, since we cannot strictly specify a phase shift which rigidly determines an optical collision, & = 1
is probably as good a value as any.

* For our future utilization let us write this as:

2xC Ca (6.88)

7 =270 = n-l
n—1
»/2 - F( 2 )
where Cyh = fcos""z edp = Vr —F7—F
—x/2 n
(%)

In these equations ¢ is the angle between the distance of closest approach p and the emitter-perturber direction. (See, for
example, Fig. (6.1)). From Eq. (6.8a’) we may write:
1/n—-1
o = ( 2’&"‘) (6.8b")

o

9xCen \2/n—1
‘Y=E_=2r( T ") oN
T o

so that ¥ becomes:

a3 atl 2 _ 3

- C2/n—1 ”n—l N (2'_)1:—-1 c”n—l o n—1

t In frequency units v (as opposed to angular frequency units w):

1/5
p = (3{_:9 (6.9)
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The shape of the broadened spectral line is still given by Eq. (6.2).

Before dealing with the controversy which arose here between the Statistical and the Interruption
theories, and which we have touched briefly in Chapter 5, let us consider Weisskopf’s attempt at quantum
mechanical justification of this basically classical theory.

6.3. WEISSKOPF'S QUANTUM JUSTIFICATION OF THE FOURIER ANALYSIS

As does Jablonski,* Weisskopf considered the broadening of the spectral line by foreign gas molecules
as an analogy to the Condon treatment of electronic-vibration bands of diatomic molecules. He began by
assuming that all the broadening atoms are fixed in space and considered the motion of a single emitter among
the members of this assemblage.

Weisskopf wrote the Schrodinger equation for the translational motion of the emitter with respect to a
broadener as:

8r'm

vz'h;(r) + '—hz— [E - V,,(l‘)] ¢,.(l‘) =0 (6.10)

In Eq. (6.10) n represents the electronic state of the emitter and E is the translational energy of the
emitter. V,(r) “...is known to be different from zero only in a very small sphere about the ... !
broadener. Inside this small sphere, of course, V, (r) represents the interaction potential between the emitter
and a broadener. The interaction is a function of the electronic state n.

A point should certainly be made here about Eq. (6.10). Weisskopf did not introduce any conditions
which quantize the translational motion of the emitter. He simply wrote down Eq. (6.10). Jablonski noted
that “Weisskopf treats the continuous translational energy spectrum as a discrete one should be treated
thus omitting an important factor in the final intensity formula.””® In a footnote he adds in explanation
that “In the case of continuous eigenvalues, eigendifferentials instead of eigenfunctions must be used. If,
by using a limited space, the continuous spectrum is transformed into a discrete one, a factor, denoting the
density of energy levels, appears in the intensity distribution formula. This factor being omitted in Weiss-
kopf’s considerations, an incorrect dependence of the width of the line on energy of collision (i.e., of the
temperature of the gas) is obtained.””

The Condon principle of separability of electronic and nuclear motion may now be utilized in analogy
to Eq. (5.47) to obtain the transition probability for a change of electronic state from n to n’ and transla-
tional energy from E to E'.

Dee = [qon(@¥n(x,E)Pn (@) ¥u (r.E')dgdr
= Ann’f 'I’n(r’E)Wn’ (l',EI)dl' (6~11)

In Eq. (6.11) q are the coordinates of the electron relative to the center of mass of the emitter; ¢,(q)

is the electronic eigenfunction, and ¥, (r,E)is the translational eigenfunction for the emitter in the electronic
state n.

Now as in our considerations of Eq. (5.57) if V,(r) = V’,(r) orthogonality decrees that E = E’;
whereas, if V,,(r) # V', (r) we may have E » E’. In the latter case Eq. (6.11) squared yields the proba-
bility that ... the emitted light departs from the Bohr fréquency w,, of the n — n' transition by

2—,:r(E — E’'). The thus computed intensity distribution is identical to the collision damping (distribu-

* See supra, Chap. 5.
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tion).”® The last statement in the quotation is given by Weisskopf without further justification and appears
to be open to question. We should recall that Lenz’s appeal to the Bohr correspondence principle is so far
the only quantum mechanical justification which we have for the Interruption broadening theory. Weisskopf
next introduced a further justification.

Let us simplify Eq (6.11) by considering it as unidimensional.* Several additional assumptions are
now made. Firstly, we assume there to be no direction change on collision. Next, it is to be assumed that
the collision consists in a passage by the broadener through the outer portions of the sphere of effective
V(r). These collisions would certainly occur more frequently than the very close approaches or the central
collisions. Finally, it is to be inferred that the change in V(r) during the collision is small compared to the
translational energy.

These assumptions Weisskopf used to justify his utilization of the one dimensional form of Eq. (5.58)
(where x > x,) as the eigenfunction.

Va(t,E) = °:I'E‘e’g¥ f e

P

(6.12a)

where: p = V2m(E - V,).
Here r, may be taken as the radius of the sphere whereon V,(r) = E or in this case the distance x;.
In the space between atoms (V,(r) = 0) Weisskopf takes for his eigenfunction:t

2w e
228 TmEBr T
¥ (x,E) = const e? VanBe s

(6.12b)

When Eq. (6.12a) is substituted into Eq. (6.11), the matrix element for a change in the translational
energy from E to E' becomes:

2-;—' f (p' —p)dz

1
const / —=¢ dx (6.13)
Vpp'

Now surely drv = vdt, and since we assumed that the change in V(r) is much less than the translational
energy, p — p' = V2mT — V2mT' < p = V 2mT in which T is the kinetic energy of the translational
P—pP p y

motion since £ = T + V. From this follows: (p — p*) v = (\’ 2mT — V 2mT) \/%—nT = 2T — 2 NTT
%= 2(T — T').** On substituting these quantities into Eq. (6.13) we obtain:

ot

const ei;_'..f @ -Dat g (6.14a)
m
Instead of Eq. (6.14a) Weisskopf obtained
3
2w ,

const [ S fa-ma (6.14b)

m

since he said (p — p')v = T — T'. We must show his proof using Eq. (6.14b) since (6.14a) simply will not
yield the desired results. Although the statement is rather shaky, we shall content ourselves by justifying

* "“The assumption of rectilinear motion is incompatible with the fact that the atomic collision problem is a central force
problem.”™ It would scem that this assumption should provide a reasonable first approximation, however.

t We should here keep in mind Jablonski’s comment on quantization, eigenfunctions, and eigendifferentials.

** Weisskopf leaves out the factor 2.
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the utilization of the relation: 2(T — T') = T — T'. Insofar as order of magnitude is concerned 2AT is
the same as AT. "

It is apparent that Eqgs. (6.14b) and (6.5b) are identical if —2—’;! (T" = T) = wy(t) — w. This identity is

what should be shown, since the absolute square of the matrix element given by Eq. (6.14b) yields the
intensity, and we wish to show that it reduces to Eq. (6.5b).

It is certainly true that 7" — T = E' — E+ V,, — ¥V, In addition, the emitted frequency must be

W= Wpp + -z—lz—r (E — E'). From these three relations we obtain:
2 , . ,
wo(t) = wnp' + & [Valx) — Vo' (x)] (6.15)

Eq. (6.15)* is a statement of the Franck-Condon principle. We are thus free to conclude that Egs.
(6.14b) and (6.7b) are identical, and, subject to certain limitations, this provides a further support for the
theory of Interruption broadening.

At this point it would be 4 propos to consider the objection which Weisskopf raised in his first article
on Interruption broadening to Jablonski’s earlier theory™ of spectral line broadening. _

We may recall* Jablonski’s and later Margenau’s utilization of the Franck potential curves for the
formulation of a broadening theory. In considering Weisskopf’s objection to Jabloneki’s utilization of these
Franck curves let us refer to Eq. (5.58). Since Weisskopf’s objections were stated in a very few words, we
shall quote them in their entirety.

“One must distinguish here between eigenfrequencies and emitted or absorbed frequencies. If w, is time
variable, then the intensity of the emitted frequency w is given by (14).f Hence, frequencies can be emitted
which have not at any time been eigenfrequencies of the atom. This is the reason why Jablonski in his con-
siderations can never find the collision damping. From the Franck curves he determines the occurrence
of the various w, -values from which in general nothing regarding the intensity distribution of the radiation
can result,”19%*

It is here understood that the *“various w,(t)”’ are the “eigenfrequencies of the atom” which are referred
to. One comment certainly appears to be in order. The conclusions drawn above are wholly dependent on
whether or not sufficient quantum mechanical justification has been afforded Eq. (6.5b).

Under the assumption that Eq. (6.5b) has been satisfactorily justified, then the statistical considerations
of Chapter 5 are now in need of justification in view of Weisskopf’s remarks. Margenau''? succeeded in
doing this by showing that in actuality a correspondence does exist between the Statistical and Interruption
theories.

6.4. CORRESPONDENCE BETWEEN STATISTICAL AND INTERRUPTION THEORIES
According to the statistical theory:
IV)dV = ci’f dt (5.22)
* See supra, Chap. 5.

t This is our Eq. (6.5b).
** These remarks appear as a footnote in Reference 193.
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Now we shall only consider this in one dimension.* The following Dirichlet factor has the value
one for ¥V ~ 3dV < V(1) £ V + 4dV and the value zero for ¥ anything else:

4
;l;fsin (3 xdV)l¥ —V Ok ﬁi"_ (6.16)

V(t) in Eq. (6.16) is defined by Eq. (5.24). Thus Eq. (6.16) allows us to extend the limits on Eq. (5.22)
so that it becomes:

+o +o
IVN)dV = ¢ / dt / sin (3 de)e"”’-"“W’-: 6.17)

We suppose that during the “time of sojourn” in the appropriate configuration, the emitted frequency
will have a magnitude in the neighborhood of w = V/# Then from Eq. (6.17):

I{w)dw = / / dtidxi sin (Jadw)e™” —(0z | (6.18)

According to Eq. (6.5b) the intensity due to w may be written as:

wtdw/2 wtdw/2 t ¢
Iwdo = [ |Jwtdo=c fff exp[i [ wn(r)dr — i [ wo(r)dr + iwt’ — t)] dedt'dw
w-—dw/2 w~—dw/2 1] 0

sin [3(¢' — t)dw]

T (6.19)

= ff dedt’ exp [i j w(r)ydr — ¢ jwo(r)dr + iw(t — 1)]

The last integral in the exponential is of small value unless x = ¢’ — ¢ is small. In addition, w(t)
should certainly be a continuous function so that the integral may be expanded in a Maclaurin series in
t' — t. The result is:

¢ ¢

- i/ w(r)dr = — i [/wo(r)dr 4+ w() —t) + wo @) @ _2- 8 +.. ] (6.20)

0 0

If the series in Eq. (6.20) is cut off after the first two terms and the result substituted into Eq. (6.19),
we obtain:

o)de = 1 st~y —iat) =ty 80 [F (¢ — £)de]
Iwd / [ aare B o) (6.21)

Then if we let x = ¢’ — ¢, Eqs. (6.18) and (6.21) are identical. Thus, the time derivatives of w,(t)
must be very small in order that the Interruption distribution reduces to the Statistical distribution. This
in turn means that the broadeners must move very slowly with respect to the emitter in order that the dis-
tribution may so reduce.

* *What's sauce for the goose . . .”
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So far, then, we have considered Lenz’s and Weisskopf’s quantum mechanical justification for the theory
of Interruption broadening which they supported, and the correspondence (mathematically at least) of this
theory with the Statistical theory under certain limiting conditions. Let us reconsider now the physical
theory implicit in our development.

6.5. THE PHYSICAL PHENOMENON IMPLIED BY THE LENZ-WEISSKOPF THEORY

For conceptual clarity, let us refer to Fig. (6.1). In this figure we have represented the emitter path
by the arrow, and the perturbers by the small circles. At point “b” on the emitter path the radiation of a
“new” wave train is initiated, since under the Michelson-Lenz-Weisskopf theory a terminating optical
collision has just been undergone by the emitter. As the emitter travels along its path toward point “‘c”’
it is perturbed by the surrounding atoms according to some potential interaction “law” of the form Cr™
and small phase changes occur. The “A” perturbers in Fig. /6.1), however, are too distant to cause an
optical collision in the Weisskopf sense (phase change of unity) so we ignore them. The effects of this

ignoration we shall discuss later. When we arrive at the point “‘c” the second “B” perturber is now within
the range requisite for inducing a phase change of unity. At this point, then, we cut off the emitted wave

“¢.” Thus, we can

train and perform a Fourier analysis of the radiation emitted between points “b™ and
see that, among other possible omissions, we have neglected (a) the effect of distant collisions and (b) the
effect of phase changes greater than unity. Let us consider Gmission (b) and defer our consideration of
Omission (a) until a more & propos time.

When we fail to consider phase changes greater than unity, as we implicitly do in the Weisskopf theory,
we essentially neglect values of  farther from line center than some value w; in the line wing. In essence,
then, we can only expect legitimate application of the theory near line center. We shall see from Lindholm’s
later work the manner in which we actually get a statistical distribution joining the interruption distribution
in the line wing. It is apparent that the limit of applicability of the interruption distribution in the line wing
will be given by Aw = 2xCr™" where r = p. Then from Eq. (6.8a’) we obtain for the limit on Acw:

vﬂ 1/n-1
Aw < ( ) s =1 (6.22)

2xCc,"

From a slightly different viewpoint we shall later obtain about the same restriction.
Let us now return to the continued development of the Interruption theory.

6.6. THE TIME OF COLLISION INCLUDED (LENZ THEORY)

Our line shape is given by Eq. (6.2), and a consideration of this equation shows us that two of the impor-
tant effects on a spectral line which arise out of the presence of foreign gas atoms are strikingly absent.
These missing effects are (1) the shift of the line intensity maximum and (2) any asymmetry in the broadened
line. An attempt to refine the theory so as to include these effects was made by Lenz® in 1933.

In essence, Lenz felt that in order to obtain a line shift and asymmetry “ ... we must not limit our-
selves to the interval between collisions but must include the effect of the collisions in calculating the dis-
tribution.”®® In the past, we have limited ourselves in that we have considered w, a constant during the
time between collisions and ignored its behavior during the actual collision.

Let us suppose that 7, is the mean time between collisions and, further, that 27 is the time of collision.
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We take fo(d) to be the frequency change per unit time during the time of collision 2+ where o is the optical
collision diameter. As did Weisskopf, Lenz defined this diameter as the molecular separation at which the
phase of “the classically substituted oscillators” has changed by one. Then the change of phase during
collision is:

¢ = 27fo(d) (6.23)
The oscillator frequency is given by:
wo(t) = wo + f(8) (6.24)
We may express the amplitude as:
x = alettit® (6.25)

where:

30) = [ floyde

The amplitude in a Fourier expansion of Eq. (6.25) we may find from an analogy to Eq. (6.5b) as:

go
J@) = [ efa=antio0 g (6.26)
-

From Eq. (6.26) the intensity corresponding to the frequency w is:

400 400
Iw) = [J) P = [ [ @-ae-0HO-001 gogy (6.27)

-0 00

The variable is next changed to T = ¢/ — ¢ where still ¢ = ¢. Thus, Eq. (6.27) becomes:

+o0 . +o
I(w) —_ f dTei(Uo"U)T fequ(t,T) dt (6’28!!)
where A, T) = 0@+ T) — 8@ (6.28b)

Now let r be the position vector of the oscillator-emitter and let r;, be the position vector of the k-th
disturber. Lenz considered all disturbers the same, and the frequency disturbance due to the k-th dis-
turber as ¢(r — r;), simply some function of their separation. Then he let the perturbations due to various

broadeners be additive so that:
f@e) = f o(r — 1) (6.29)

although he noted that ““ . . . in the case of very large densities of disturbing gas this assumption is probably
not good.”** The rectilinear velocities of the emitter and the k-th disturber are given by v and v, respectively.
The position vectors at time ¢ = 0 are taken as r® and r;’. Finally, Lenz assumed that close or central
collisions are not of importance compared to those in the neighborhood of the optical collision diameter.

By the above definitions:
ot — 1) = ¢[(r" — 1) + (v — v (6.30)

so that, by Eqgs. (6.28b), (6.29), and (6.30):
T
AS(0,T) = ZA0,(0,T) = 2 f o[d* — 0t + (v— vi)a] da (6.31)
0
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Lenz assumed that the second integral in Eq. (6.28a) is the statistical time mean value of 29T This
assumption provides a device for the evaluation of the integral.

Let us digress for a moment from the matter at hand in order to justify Lenz’s next step.

If we are considering the behavior of a collection of IV; particles, we may first conveniently setup a 2]V,
dimensional phase space, the coordinates of which are the 2]V, position coordinates and conjugate momenta
of the IV particles. Any point in this phase space will now represent a certain momentum and spatial
configuration for the Nj-particle system, and this point is generally referred to as a representative point.
The behavior of this representative point conveniently tells us the behavior of our system, and Boltzmann’s
impressively titled “ergodic hypothesis™ tells us what we may expect this behavior to be. The ergodic
hypothesis* states that the representative point will successively pass through all points in phase space
compatible with the total energy of the system. We cannot prove from this hypothesis, but we can certainly
infer from it that the statistical time mean value ofa quantity will be the same as the statistical mean value
of the quantity.

Thus, the second integral in Eq. (6.28a) which Lenz has assumed to be the time mean of the integrand
may be evaluated by finding the mean of the integrand.

If we take uy, vy, w; as our components of v, and x;°, y;°, z;° as our components of r;’, the volume
element of the phase space of our broadeners will be:

dvV =1 dxk“ d_)’ka dzk“ duk dllk dwk
Now let us assume a Maxwell-Boltzmann distribution, and we then obtain:
+w
iA90.T) E/RT g1/

fAS 7, _ iAS _fe
/eA dt= <> = T& a7

- 00

(6.32)

We have made the assumption that all broadeners are the same. On this basis, Lenz wrote Eq. (6.32)
as the product of V, identical integrals. Although Lenz does not mention it, we should always keep in mind
that all such transformations to integral products are not wholly justified by the assumption of identical
particles. As has been mentioned,{ previous occupancy of certain portions of space by other broadeners
would still limit the integration for any one broadener to the unoccupied portions of space. Thus, in cases
of this kind, an additional assumption must be made to the effect that these previously occupied parts of
space need not be excluded.**

We let:

E=2 -'—né& (Vk . Vk) (6'333)TT

[vl=cs |l =caser = = ;m =m =mo (6.33b)
my

* To be quite technically correct, we should probably introduce the so-called quasi-ergodic hypothesis, but the ergodic
one will be sufficient to our purposes.

t See supra, Chaps. 5 and 6.

** This is also implied by Eq. (6.39), that is, by neglecting interactions between broadeners.

tt Kinetic energy is here taken as total energy.
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Utilizing Eqs. (6.33) the k-th identical integral becomes, after integration of the denominator in
Eq. (6.32):
+ o
o / e R/ HIROD) du dy di duy doy duo, (6.34)
Ve C[)a
-
Next it is assumed that Ad, (0,T) is very small except in the immediate neighborhood of the emitter.
Now let:

/eiAék(O.T) dxk dyk dzk =V + Tk (6.35)

where V' is the volume in the configuration space of the k-th emitter, and T} is the integral of ¢***©T) over,
the spheres of effective Ad; (0,T). Utilizing this in Eq. (6.34), we obtain:

+o0
1 —ckt/co? = NT
1+ mg/’rke K duy, doy, dwy, = 1 + 7\’—1 (6.36a)
—o
4o
where: T = .”3/20 3 f [9%OD _ 1] o=/ g, ., duo (6.36b)
0
— @

Thus, when Eq. (6.32) is considered as the product of N, identical integrals of the form Eq. (6.36),
the result is:

4 + o met
f 40 gy = / N1 "t du dv duw 6.37)

In Eq. (6.37) we have finally integrated over the velocity space of the emitter after having introduced

- . NT .
the Boltzmann factor e™™/™%" for the emitter. The approximation: 1 4+ —— = ¢¥T/¥ hag heen used,

1

Nv. . . . . .o .
1 +N— being the first two terms in the power series expansion of ¥ /¥, In addition m is the mass of the
1

emitter.

The integral of Eq. (6.37) may only be evaluated by graphical methods. Lenz considered certain
special cases.

The limits on Eq. (6.31) may as well be — 1T and 4-17. Then:
A%, (0, — T) = — A% (0,T) (6.38)

from Eqs. (6.31) and (6.35). Now, in order to carry out the integration in Eq. (6.35), let the x-axis of our
spatial coordinate system correspond to v — v;, and define quantities as follows:

# o=~y (- (6.39%)
="'+ |v—-v|a (6.39b)*
pt =x* — x,° (6.39¢)
m=|v—w|T (6.39d)

*Lenz gave pfasx — x, + | v —~ v, | a in place of the above.
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Thus, r* = p*(1 + B*) where r is the emitter-broadener separation, 8 is the cotangent of the angle
between r and the x-axis, while £ is the tangent of this angle.

We assume an interaction potential function of the form ¢ = —ar™”, Then by virtue of Eqs. (6.39),
Eq. (6.31) becomes:

T/2 £4n/2
A8,(0,T) = ~far—"da = —a f (21 + 52)]-9/2[ _pdf ]
v — wi|
~T/2 £-n/2
§+n/2
- ~g / __ B (6.40a)
(1 + gy
£-n/2
1 a
where 8= v — v (6.40b)
On the basis of the high p normally present the simplification may be made:
‘ d
- B8
Ve / (1 + p)*” (6.41)

Now Eq. (6.41) is very small for { less than around —1, a constant for { greater than around +1, and
nearly rectilinear for intermediate {. We then take for ¢ (¢):

Oforf < —«
p() = x(¢ +«) for —x < ts+ « (6.42)

2ku for & >«

Lenz found by graphical integration that for 6 < p < 10, « has a value of 0.75 and «u ranges between
0.57 and 0.44.
We may take dx; dy, dz; = 2w dp df so that from Eq. (6.35):

-] +o
Ty = — [ 2xptdp [ [2%OD —1) dt (6.43)
0 -0

In integrating over ¢ we need only consider n > 0 according to Eq. (6.38). Also, due to Egs. (6.41)

and (6.42) the integral reduces to one in the two regions ¢ + 127— 2> —xand § — g. < 4+« Now integration

over £ gives for the two cases shown:

e
forn > 2« : 2k 4+ 94 2k — e Fxx 4 'E’-C (e™2oxx — 1) (6.44a)
forn < 2 : 241~ (2 — e~ 4 2 (g=%exm _ ) (6.44b)

18X
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In attempting to carry out the remaining integral, Lenz divided the integrand into two parts corre-
sponding to Eqs. (6.44a) and (6.44b).* Thus:

Ty = T, + 1,@ (6.45)
Let p, be the optical collision diameter. From Egs. (6.40b), (6.33b), and (6.42) Lenz expressed p, as:
1/p~1
o = 2 ( 1) (6.46)1
Co
which is arrived at by assuming a phase change of 1 (or 27) to have occurred at p; separation. Now let:
A= c.g?: ; 0'=__—__—|V"'Vk|
Po o) (6.47)

At the boundary between the regions of Eqs. (6.44), from Eqgs. (6.39d) and (6.47) 2«py;, = oAp,. Thus,
we get for the value of Eq. (6.40a) at the boundary:
2xx
aPAP (6.48)

Due to the high powers present in the denominator of Eq. (6.48) v, is either < 1 or 3> 1 except in a

Yo = 2kX8lim =

small transition region.

From Eqs. (6.39d), (6.40b), and (6.47):

p-1

p 7 \2¢p (6.49a)
2kx [ po p-1 fo 4
and le "1 kX8 - < 2xp) Y2 = X1 KX (2” (6.49)
3 3/p-1
Ful'thel': 21[' (g'-‘) pzdp = - 21f (LKX) ? -dll. - ﬁ (2_K_xi‘) _‘1’_'3
Po p—1\on 7 P\ 7 /7 (6.49¢)

We may thus introduce Eqs. (6.49) into Eqs. (6.44) and then introduce the result into Eq. (6.43) to
obtain:

% = eilro)o ™ 4 (o) agt™ 2D (6.50a)

:
—?; = VA + Yy(rp)ohl+2 (6.51a)

:
alr) = - ;3_"'—1 Q—gl—;:) :fw (1 = n) 7—1@"—3’7‘(77) (6.50B)
Wi = = - - (2“’(‘;2;:”_” ? (1 — ) ;l——JiZ:T_T, (6.50¢)
ea(v0) = — —%” (2(;‘)):/” of (I = &™) 7111,2,, (6.51b)
alr) = _%%ﬁf [(1 T+ i%;(e_m B 1)] 7_,:1—1227' (6.51c)

* y goes from © to 0 as p goes from 0 to .
1 It would appear that we should have (2x)!/? ~! here instead of 2x. We simply use the Lenz result above, however.
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An inspection of the above integrals indicates that they are properly convergent. If we now let
z = gA!"1? then, since zxx ~ 1 (see Eq. (6.42)) Ty ~ 277 according to Eq. (6.48). If o, A, and, as a conse-
quence, z take values from 0 to o then vo is obviously <1 or >>1 except right around z = 1. In the case
v0&K 1, it is apparent that we may neglect Eq. (6.51a) compared to Eq. (6.50a), and in the case vy, 3> 1
the reverse is true. Thus, there results:

o)
L o 407900 B0 for opl1P > 1 (6.52a)
Po
@
—”T = AgAa/p + B, oA 2P for gAVP < 1 (6.52b)
Po
where: Ay = ¢1(0); By = ¢1(0); Ay = ¢3(0); By = yu(®0) (6.52c)

Eqgs. (6.52a) and (6.52b) are not valid near the indicated limits, and in addition “cumbersome expres-
sions” must be introduced for the transition region. These expressions are neglected as “‘keine Rolle spielen.”

This essentially completes the evaluation of T;. Now it will be necessary to integrate over T in Eq,
(6.28a) and over velocity space in the transformed version of the second integral in Eq. (6.28a) in order to
obtain the intensity distribution. Integration over T infers integration over A in the equations for T;.*

Lenz established a polar coordinate origin at the endpoint of v. We let the angle between v and v — v,
be ¢ and take this angle as our polar angle. Then we take v — v, as the radial coordinate and & as the
azimuthal coordinate. Our volume element in the velocity space of the k-th emitter becomes:

duydvdw, = —(|v—vi|2d(|v—vi|)ddd(cos ¢) = —2xctods d(cosy) (6.53)

where, since our integral will possess azimuthal symmetry, we have integrated over d9, and where Eq. (6.47)
has been used for the substitution for v — v;. Now let us apply the law of cosines to the vector triangle
consisting of v, v, and v — v; where the ahsolute values of the three vectors are given by Eqs. (6.33b) and
(6.47).

il = &+ ¢fo? — 2¢cy0 cos ¢

2
o (sk_) = ¢+ o — 2o0p.008 g3 01 = 2 (6:54)
o’ G
We next substitute Eqs. (6.53) and (6.54) into Eq. (6.36a) and integrate over cos from —1 to +1 to

obtain:
1 ~(o—ao)? —~(o4-00)?
T = V;;o [e — e ] Tk(o’)o‘ do' (6.55)

0

Now the following function is formed:

1 [ , o
Fj(ﬂ'o) = V:l_;__; /[e—(v—vo) - e-—(v+¢c)] a7t da (6.56)

* See supra, Eq. (6.47).
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When Egs. (6.52) are utilized in Eq. (6.55) integrals of the form of Eq. (6.56) will result, and the relevant

values of j will be: j = — ——3—-1, 0,1~ 2 -, 1. Since we may expect large p values, j is always
P )
between —1 and 1 in value. In order to find F; (0), apply I’'Hospital’s rule to Eq. (6.56) to obtain:

]

1 ' ,
Fi(oy) = lim {;/:/[2(6 — a)e" TV 4 2 (5 + gg)em W] o do'}

o¢ -0

0
4 2 :
- —at 2 == J+1 7
\/r./ e " o da W I‘(l + — (6.57a)
0

Eq. (6.57) holds then for o, = 0 which in turn means that ¢ = 0 and we consider the disturbers at rest.
Now for the p values which may arise F; (0) has values between 1.13 and 1. The other limiting case of F;(c,)

arises for o, >> 1. In this case, the second term in Eq. (6.56) drops out as small. The integral only has
appreciable value near ¢ = g, 8o that:

Fio) = of 5 o1 (6.57b)

where o, = 4 is large enough.
Lenz allowed Eq. (6.57a) to suffice, and, further, on the assumption of low gas densities, he neglected
the region of Eq. (6.52b) and simply used Eq. (6.52a). We shall not show this, but it might be mentioned

here that at pressures of more than one atmosphere Eq. (6.52b) must be utilized. Now from Egs. (6.52b)
and (6.52a) we may obtain:

NT = Npg [Alfo (00) + ABF; (a’o)] (6.58a)
. 3 . 2
h=———— 3 Ja=1l—-—0wr (6.58b)
p—1 p—1
The Doppler effect is next introduced by replacing w, the natural frequency of our substituted oscillator
by w, = wy(l — u/e;), the frequency shifted by an emitter velocity of u in the x-direction.*
Eqgs. (6.58a) and (6.37) yield for Eq. (6.28a) the following:

m
—aod

@) =B ([T du do dwdn ) (6.59)
0

The real part has been taken here, since by Eq. (6.38) we may take the real part, and then take as lower

integral limit zero instead of minus infinity. Also in Eq. (6.59) ~ll~ = (0, — w) LIRS (we = w) Toy my is the
Co
mass of a broadener, and m is the mass of the emitter. Integration has been taken over A which replaces T

according to Eq. (6.47). Integration of Eq. (6.59) may be carried out over A if Eq. (6.58a) is kept in mind.
The result is:
@® m .
Iw) = B{f & ™" dudvdwG (o)} (6.60a)
0

where: Gloy) = N™AF fi(y — 4)Ty + Npd By Fj, (00) (6.60b)
* Cf. supra, Sec. 1.5.
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The real part of B, is negative. Lenz considered the special case of Hg where o, < 1 so that in Eq

(6.60a) J(w) = R[G (0)]. In addition, for the case — ~ 1, the integrand of Eq. (6.60a) may be regarded

mg

as a “Zackenfunction” whose only appreciable value occurs for oo ~ 2, Lenz took o = 2 and disre-
m

garded the Doppler effect. The result is:

Iw) =R [c <\/ %")] (6.61a)

Let us develop the exponential in Eq. (6.61a) in a series and take only the first two terms to obtain:

Iw) = { 14 Noi Fj, [R(4) + i I(4))] } _lt @m0l 0
i(wo — w) T + Npét Fj, [R(By) + J(By)] (o + Awy — w)* + (8/2)
To Awy = Npg® Fy(om) I [Bi]; =2 8 = Npé Fj, (o) R [Bi] (6.61b)
_gl[ ]F]l(dm) T=ﬂ-'a' - _;'_"—_0 6.61
QR[BJJ F;,(Um) ’ Co T m (661¢)

We can see by a consideration of Eq. (6.61a) that this very restricted line shape equation does yield a
shift as given by Aw, of the intensity maximum and an asymmetrical line, a measure of whose asymmetry
is given by e. As in other dispersion type line shapes 6 is the half-width of the broadened spectral line.
Finally, T, is the time that a collision lasts, and it can be seen that as this goes to zero the line loses its
asymmetrical shape and the shift disappears.

6.7. A SPECIFIC EVALUATION OF THE LENZ HALF-WIDTH

The half-width may well be evaluated more precisely for future comparison. From Egs. (6.52c) and
(6.50c) we may write:

L]

b= o 2 [y

B, p - 1 (2x)2 711+2/(p—1)

I

—_ 2x (2KX)2/5/( —l'n) dv

5 (e 7w

We shall only sketch the method developed by Jensen® for the evaluation of an integral of this type.
The integral is first transformed as follows:

: dv i ( 2 )
1_ $¥1 =
6/( " WD T 501 Y \p =1

L] a

2 -2 [ i 2 e - 2
where: @ (———— ) = (—i) P—I/e x7-1dy = lim lim [e x ?-ldx
P — 1 «0 a-»®
1} ¢
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On the substitution »~ = i, we obtain for ¢:
wmal
¢ = (=) ¥* D fim km [ ¢ w V"V du

«Q) GH®
W=

'We consider ¢ in the complex plane where ¢ would be an integration along the axis of imaginaries. By
using Cauchy’s Integral Theorem we may equate this to the sum of integrals (a) along a circular path about
the origin from i¢ to ¢, (b) along the axis of reals from ¢ to a, and (c) along a circular path from a to ia.
After carrying out these operations we finally obtain:

2
2 Y = cpemonn(y 2 ) (1) oy
¢(p-1) ; ( P-l) sin[r( _2_1)]1‘(1-{-}-,—%——1)

® N 2
so that / A — &m) dv; _ - exp [i 2 (p"'—"_ 1)] _ - &/8
142/(p+1) -
LN ) =)
0 sin | x Nl 4+ ——- sin{ =—x) I{—
p—1 p—1 5 5
and (2xx)2/®

R (B) = — 3.7845

(2x)*
On substitution from Eqs. (6.61c) and (6.46), Eq. (6.61b) becomes:
8 = 1977 N (c))¥® (a)¥® F (6.62)

where we have utilized the value xkx = .57 since p = 6.*

Although Lenz has introduced into the Interruption theory a consideration of the time of collision, thus
obtaining a line which is shifted and asymmetrical, he has obtained an equation for this line which is only
valid in a very restricted domain. As has been mentioned, the considered equation is only valid for pressures
up to one atmosphere and for frequencies near the line center. The line center restriction is partly due to
the fact that the intensity and hence numerator must be greater than zero. This in turn would mean that
| wo — w | must not become too large.

Although Lenz’s results are not very generally applicable, he certainly demonstrated that successful
modification of the Interruption theory was dependent at least to some extent on the inclusion of the time
of collision, and the inclusion of this time in a more successful manner awaited Lindholm’s later attack!® 1%
on the problem. Lindholm’s avowed intent was ‘. . . to perform the Fourier analysis without the limita-
tions that reduce the validity of Lenz’s paper.’”%

* See supra, Eq. (6.42) and subsequent,
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6.8. LINE SHIFT WITHOUT COLLISION TIME
In analogy to Eq. (6.27) we begin with the equation:

I(V) = lern'(v —vo)H‘-l'A(t)dt lz

+w . " 4 J| e ¥
= ff e2ﬂ(v —w) (¢ —t)lA(L") —A( )’dt dar
-

+@ . +o , ,
- f ezﬂ(v —vo)tdt f etlA(t +t) ~AQ )]dt/ (6-63)
-0 ~00

As had Lenz, Lindholm considered the second integral as the statistical time mean value of the integrand
and set this time mean equal to exp(—A4(t) + iB(t)) so that:

I() = }e"“‘) cos 2x(v — vy)t + B(t)lde (6.64a)
o

Next it is assumed that but three different phase changes occur on collision.* These we shall designate
as 7, M N This in turn would mean that three different “differential collision cross-sections,” ¢, occur,
where:

o; = [ | J(n;) |? sin ¢ d9 (6.65)

The total cross-section is ¢ = g, + o3 4 0., and the mean time between collisions is 7. The proba-
bility of n + m <+ [ collisions during the time ¢t is then:

1 (_t_)n+m+le—¢/‘f
(m+m+ D! \7 (6.66a)

and the probability that, of these (n + m 4 1) collisions, n will be of type a corresponding to a phase shift 5,
m will be type b, and I will be type c is:

n+m+D!fa\" (e,\" [0, \
nlmll! (?) <}é> (7) (6.66b)

Thus, the probability that n a-collisions, m b-collisions, and I c-collisions will occur in time ¢ is:
n m 1 n+m+-l
G C) C) mmm () e @60
o a o/ n!m!l! \r

A +¢) — A@) = 2’2 (Aet + &) — 84()] = nng + mny + In, (6.68)

As in Lenz’ considerations:

A+ —A))

In this case then the mean value of ¢ which. Lindholm assumed equal to the second

integral in Eq. (6.63) is given by:
@ ®w o n m 1 n4-m+l
JaEHI-Al = 3 03 3 (Eg) (ﬂ)) Eq) 1 _f_) ~t/r [ Siangt-mabting .
<e > n=0 m=0l=0 \ O v ¢/ nIm!lU\T7 € {e } (6.69)

* As we shall see, we could initially assume some other number and later extend the number of allowed phase changes as
desired.
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No normalizing denominator is needed in Eq. (6.69a), since the factor multiplying the exponential is

e ® [ te\" gt
already a normalized probability. Since: = ( d ) -— = exp [——“— e"’“] , ete., Eq. (6.69a) becomes

n=0 oT n! or

.;; [oac™a + apeih 4 opeine le iyr

BN =80y = o (6.69b)
Utilizing Eq. (6.69b) in Eq. (6.63) we obtain:
I6) = R | [ eriv=wrg = [Zeicon nit isin n)— o] dt)
A [;t;  oisin 1, + 2n(v ~ vo)t] de (6.64b)

where we have taken the real part of exp(isin 7,) since the intensity is a real quantity. Thus, from Egs. (6.64)
there results:

A=t2% ¢ —o;cosn] = at (6.70a)*
5 o7

B=1t2 %Zging = pt (6.70b)
i 0T

and Eq. (6.64) becomes:
Iv) = f e cos {[2x(v — ») + 8] t} dt
0

const.

[o-oef <] o

In obtaining Eq. (6.71) the collision time has been neglected in that we simply took the various phase
changes as having occurred. A comparison of Eq. (6.71) with Eq. (6.61a), however, shows that this neglect
of collision time has only effected a change from Lenz’ result insofar as the line asymmetry is concerned.
Eq. (6.71), of course, yields no line asymmetry. This difference between the two equations arises principally
from the approximations which Lenz was obliged to utilize.

It might also be noted that we restricted ourselves to three phase changes 7,, 7, and 7., in setting up
Eq. (6.67), but there is no reason to restrict Eqs. (6.70) for the shift and half-width in this manner.

6.9. REASON FOR WEISSKOPF THEORY FAILURE TO YIELD SHIFT%

Let us digress for a moment in order to consider an interesting aspect of the situation which has been
mentioned by Burkhardt'® and Unsold.?® To begin with, let us rewrite Eqs. (6.70) as:

a = vN}'Jai( 1— % cos q,-) = oNZ 20, sin2—2-"‘ (6.72a)

a
B = vNZ o 8in n; (6.72b)

* Lindholm gives [1 — o; cos n;l.
t Cf. supra, Sec. 6.5.
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From Eqs. (6.71) and (6.72a) it is apparent that the damping constant v may be written as:

y = 2a % 20NZ 20, sin® -’;- (6.73)

If, as usual, the distance of closest approach is taken as p, then the cross section o; for a phase change n;
can be taken as 2x where we now suppose there to be a continuum of cross sections instead of the discrete
set of Eqs. (6.72). In addition, the assumption of this continuum replaces the summations in Egs. (6.72)
by integrations. These changes in Eqs. (6.72) together with the substitution for n; of Eq. (6.8a’) into these
equations yield: '

®
v = 20N / 4x p dp sin? 2’;9';"
vp
0

2 n3 il 3 ; 1
= Cn-1 pn~1 N 8xn~1 ¢, n-1 / sin? xdx (6.74a)
0

a 1

o

B=w, ~ wy = vN/21rpdpsin 2’;5_‘;"
o

vp

2 —3 n+1 2
G o1 N 20001 g1 / sin = xds (6.74b)
X

where now: e I

Now let us consider the case of n = 4 as illustrating a rather interesting circumstance relating to the
Weisskopf theory. (We note that in order to obtain agreement between Egs. (6.9) and (6.74a) we must
needs choose 7, = 0.64.)

We may recall the failure of the Weisskopf theory to yield a line shift under any conditions.* What
we propose to demonstrate is that the neglect on the part of the Weisskopf theury of collisions resulting in
phase changes of less than unity, while accounting for most of the broadening, is responsible for the absence
of a line shift.

To begin with, let us plot xsin? —}—:- (from Eq. (6.74a)) and xsin ;2:; (from Eq. (6.74b)) against p/po- The
x

result appears in Fig. (6.2), and let us consider this figure. The vertical line in about the center of the figure
is the Weisskopf collision radius. Now the area under the upper curve gives us the integral in Eq. (6.74a)
and is hence a measure of the broadening. In like manner, the area under the lower curve is a measure of the
shift. The Weisskopf theory only considers those areas to the left of the ordinate specifying the Weisskopf
collision radius. It thus becomes quite apparent that with the adoption of this radius we obtain almost all

* This is not true for his more detailed theory for which see infra, Chap. 7. This theory does not appear to have been
applied, however.
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No normalizing denominator is needed in Eq. (6.69a), since the factor multiplying the exponential is

L g\ n X
already a normalized probability. Since: Z (aate ) 1. exp [Zﬂf e"'“] s ete.,, Eq. (6.69a) becomes

n=0 oT

£ (0400 4 opeib 4+ ageine ] =T

(6.69b)

LB -80S, o o7
Utilizing Eq. (6.69b) in Eq. (6.63) we obtain:
I6) = R { f ezri(v—y,,)te:;[Eivi(cow&iain )= o] dt}
R [;‘; 2 oysin n; + 200 — v,,)t] de (6.64b)

where we have taken the real part of exp(isin 7,) since the intensity is a real quantity. Thus, from Egs. (6.64)
there results:

A=t32 [0 — oicosn] = at (6.70a)*
T 0T

B=1t2Zging, = pt (6.70b)
i 0T

and Eq. (6.64) becomes:
Iv) = f e cos {27 (v ~ »p) + B] t} dt
0

const.

[o—w+E]+[2] 61

In obtaining Eq. (6.71) the collision time has been neglected in that we simply took the various phase
changes as having occurred. A comparison of Eq. (6.71) with Eq. (6.61a), however, shows that this neglect
of collision time has only effected a change from Lenz’ result insofar as the line asymmetry is concerned.
Eq. (6.71), of course, yields no line asymmetry. This difference between the two equations arises principally
from the approximations which Lenz was obliged to utilize.

It might also be noted that we restricted ourselves to three phase changes 7,, 15, and n,, in setting up
Eq. (6.67), but there is no reason to restrict Egs. (6.70) for the shift and half-width in this manner.

6.9. REASON FOR WEISSKOPF THEORY FAILURE TO YIELD SHIFTt

Let us digress for a moment in order to consider an interesting aspect of the situation which has been
mentioned by Burkhardt's and Unsold.?® To begin with, let us rewrite Eqs. (6.70) as:

it

a

vNZo; ( 1— % cosn; ) = vINZ 20, sin g—;—! (6.72a)

o
B = uNZ o, sin n, (6.72b)

* Lindholm gives [1 — o; cos 7.
t Cf. supra, Sec. 6.5.
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From Eqs. (6.71) and (6.72a) it is apparent that the damping constant ¥ may be written as:

¥ = 2a = 20NZ 20, sin’ —;1- (6.73)

If, as usual, the distance of closest approach is taken as p, then the cross section o; for a phase change »;
can be taken as 2r where we now suppose there to be a continuum of cross sections instead of the discrete
get of Eqs. (6.72). In addition, the assumption of this continuum replaces the summations in Ege. (6.72)
by integrations. These changes in Eqs. (6.72) together with the substitution for n; of Eq. (6.8a’) into these
equations yield:

vpn-—l

»
y = 2o0N / 4r p dp sin? 2x Coy
0

2 3 atl 2 r 1
= (=1 n=1 N 8gn—1 ¢, -1 / Bin’—-;:-l' xdx (6.74a)
X

0

2xCc,

v pn-l

®
B=w,—w,,.=va2rpdpsin
0

Y .
2 n-38 n+1 2
= i Nz o [ ain L wde (6.74b)
x

where now: P ot

Now let us consider the case of n = 4 as illustrating a rather interesting circumstance relating to the
Weisskopf theory. (We note that in order to obtain agreement between Eqs. (6.9) and (6.74a) we must
needs choose 7, = 0.64.)

We may recall the failure of the Weisskopf theory to yield a line shift under any conditions.* ~ What
we propose to demonstrate is that the neglect on the part of the Weisskopf theory of collisions resulting in
phase changes of less than unity, while accounting for most of the broadening, is responsible for the absence
of a line shift.

To begin with, let us plot xsin? % (from Eq. (6.74a)) and xsin% (from Eq. (6.74b)) against p/p,. The

result appears in Fig. (6.2), and let us consider this figure. The vertical line in about the center of the figure
is the Weisskopf collision radius. Now the area under the upper curve gives us the integral in Eq. (6.74a)
and is hence a measure of the broadening. In like manner, the area under the lower curve is a measure of the
shift. The Weisskopf theory only considers those areas to the left of the ordinate specifying the Weisskopf
collision radius. It thus becomes quite apparent that with the adoption of this radius we obtain almost all

* This is not true for his more detailed theory for which se¢ infra, Chap. 7. This theory does not appear to have been
applied, however.
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the broadening effects (insofar as this theory is concerned) while we obtain almost none of the shift effects.
In addition, these curves serve to illustrate the relative importance of nearand distant collisions in broaden-

ing and shift.

If the n; are very small then, since sin n; = n;:
W~ w, =B =0oNZaom (6.75)

In Fig. (6.3) is illustrated a wave train during whose emission strong collisions (3 > 1), which lead
primarily to broadening, and weak collisions (n < 1), which lead primarily to shift, have been undergone
by the emitter. Let us suppose the wave train to be essentially rendered completely incoherent at a strong
collision insofar as Fourier analysis is concerned, and let us determine the mean frequency between two strong
collisions separated by a time interval T. In order to do this, it would appear quite reasonable to add to the
number of vibrations of the natural frequency, w,T, the number of additional vibrations due to the weak

collisions TulN Z o; »; to obtain:
ni<i
Wy = —1—{ w T + ToN Z o; 17,-} (6.76)
T ni<l

The most cursory glance serves to show the agreement between Eqs. (6.75) and (6.76).
Finally, a consideration of Table 6.1 yields values for shift and width from Eqs. (6.74) according to this
theory. The case n = 2, in addition to yielding a symmetrical line yields:
Yy = 875 CL.N {

0923 — In gy + M = .. } 6.17)
v

24

the reason for its exclusion from the table being self evident. In addition, the table gives the 7, necessary
for agreement with the Weisskopf theory.

Dy Tn Non Bn Yn/Bn
4x3 CN 0.64 —— -_—
4 388 CV3 /3 N 0.64 334 Q13N 1.16
170 C/s /s N 0.61 6.16 CY/s v?/S N 2.80
Table 6.1

6.10. LINDHOLM GENERAL THEORY TO INCLUDE COLLISION TIME

Next Lindholm considered the problem with the collision time included. Let the collision time be s;,
and the phase change per unit of time during the collision be k,. Then, if we assume the phase to change
linearl y during the collision, the total phase change on collision will be n; = k;s;. Let us consider Fig. (6.4).
x and y measure times back to ¢’ to ¢’ respectively as shown. The five arrows below the time axis represent
five different collisions whose duration is represented by the respective arrow lengths. Only those collisions
which occur at least partly during ¢’ —¢' are to be included.

In analogy to Eq. (6.67) the probability that n,; collisions will begin during the time interval dx is:

. da\"sb
(;': dx _,17/ (6.78a)

g T
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It can be seen directly from our definitions that these collisions will contribute to /4% ~4¢)

the factor

e"nn‘kw(n.' -z) ( 6.798)
where:
o(s; —x) =0 fors; ~x <0
ols; —x) =s; —xfor0 <s; —x <t —+¢
ols; —x) =1t fort/ —t' <s; —x (6.79b)

Eq. (6.79b) is merely a restatement of our restriction of the collision such that at least a portion of it
occurs within ¢ — ¢'.
In analogy with Eq. (6.78a) we get for the n,; probability:

(5.- éz)"”' _ 1 (6.78b)
o 1/ nler”
and in analogy to Eq. (6.79a) we obtain:

R ) (6.79¢)

where:
Vis; —y) =s;fors; —y <0

V(s —y) =y for0 <s; — y (6.79d)

From Egs. (6.79a) and (6.79c) and in analogy with Eq. (6.69a), we now obtain the mean value of

et'(A(t") —~A(th] as:
® L] -] [ .
<80 -3 . 3% Fa.s DOO L __ (ﬁ‘i"l)"zf'
nr=0 nz;=0 ng, =0 ny;i=0 i dg dy; nzn.! edzl/f c T
. dy; \"vit (s s (ar
1 e i GY; e'T'lzukw(u z)+nyjikid (si—y)] (6.80)
n .'eT o T/
Vst

In Eq. (6.80) the x; represent the possible dx time intervals during which included collisions may
originate, The y; represent the possible dy time intervals during which included collisions may originate.
Thus, n,,is the number of collisions of the type one originating with some probability during the dx; time
interval. Again we can see that the summations in Eq. (6.80) are the MacLaurin series expansion for the
exponential. We, of course, have such an exponential for each dx; (or dy,) interval, and they are all to be
multiplied together. Let us consider the dx; intervals. We have a long series of exponentials corresponding
to the various dx; intervals which are to be multiplied together. This is the same as adding the exponents
of these exponentials, and, since we may define dx; as small as we like, we may change this sum of exponents
to an integral over x. The same holds true for y, and, when we have summed over i in the exponent, we
obtain as the contribution to our mean value:

[J

3] -2

aTr
0

¢
+ f (ﬁx o= _ i"_)] (6.81a)
or T
0
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In the second integral of Eq. (6.81a) we do not extend the upper limit beyond ¢ since this would then
duplicate the values given by the x-integral. Since Z o; = o the following relation holds:

DN

Finally let us sum over all collision times s;, and neglect the summation over i which may be introduced
at any subsequent point. Our mean value is then:

0 0
< AEI AN 5 o exp z [ / (ﬁ_di‘ giv(si—2) _ ‘L’i")
o =0 g T aT
0
3
n f ( oy s i) _ 'L"_y) (6.81b)
oT ar
0

From Egs. (6.64a) and (6.81b) we now obtain:

L]

o (Y

+ /(ady cos [k; ¢ (s; — y)] — ”i)’)] (6.828)
..-o{ / —— sin[k; o(s; — 2)] + / Y gin [k pls; — y)]} (6.83a)

Our function ¢(s; — x) has been defined by Eq. (6.79b). As an example this equation yields for the
first integration Eq. (6.82a)

o (—-

[

+_2‘3 (o‘:fx cos[k(s,—-x)]-— _é)_'_ 5_/?
,‘.

(ﬂ cos [k; - 0] — oy L‘f)
4 =0 or

or oT
o

ot

+ 5 ( :x cos [ki(s; — x)] — ;_dx) +§‘/(¢f [kitss ~ 0] —os :")

a7
n—l 0
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In this manner we obtain Eqs.(6.82b) and (6.83h)

¢
A =3 %[0 = cosny (£ — ) — sin ;> + 25,]
§=0 0T k;

o
+= % [(1 ~ cos ;1) (s; — ) — sin k;t = + 2:] (6.82b)
s=t OT k:‘

t
B=3 ﬁ[a-cosn,-) 2z +sinn,-<:-—s,->]

50 a7

£

+ X [(1 ~ cos k;t) 7‘2— + sin kit (s; — i)] (6.83b)

=t OT s

The direct substitution of Eqgs. (6.82b) and (6.83b) into Eq. (6.64a) would now give us an expression,

if a rather cumbersome one, for the intensity distribution, but before doing this, let us digress for the purpose
of simplification.

6.11. SPECIFICATION OF AND APPROXIMATIONS TO THE GENERAL THEORY

First we shall assume, with Lindholm, that all perturbers possess the same velocity relative to the
emitter and let this velocity be the relative mean velocity <v>.* Next, it is assumed that the perturber
paths are straight lines.t  The frequency perturbation is taken as the van der Waals interaction Ay = —bR™®
where R is the broadener-emitter separation. If the distance of closest approach is p, and the phase change
as before is »,, we obtain from Eq. (6.7):

+® +o
n =2 / Avdt = 2xb / dt = 3rb (6.84a)
(<v>28 4 p¥)? 4<v> pb
—o -

The “length in space of the collision” we now take as proportional to p and as given by 2¢xp. Let:

x =) [8 <v>:|1/5 Ly = So>t [8 <v>:|1/5 (6.85)
3% 2c L 3%
so that Eq. (6.84) becomes:
= 2 (6.84b)
] x‘
In addition: s
o= 200 _ 2 [ 3% ] . (6.862)
<v> <v> L8<v>
1/6 1
Boo Moo So> [8<”>] 1 (6.86b)
Yoo x L 3x% x

* We may recall that in the Lenz derivation not a constant velocity but & Maxwell-Boltzmann distribution of the uk, vk,
and wy, was assumed. We shall see that this apparently has little effect. L.

t If Jablonski's criticism?® of Weisskopf’s one dimensional assumption — to the effect that such an assumption is incom-
patible with the central force problem involved — was valid, it is applicable here.
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2x [ 3% ]1/5 6
= .86¢
<v> [8<v> 4 ( )
3x% |5
. = = d 6.86d
o; = 2xpdp 27[8<v>] x dx ( )

where Egs. (6.86) follow from Eq. (6.85) and the definitions of the various quantities. Also let:

3/5 - 1/5
de'd ] Ck= (v — ) T [ 3x’b ] (6.86¢)
<v> <v> 1 18<v>

where IV is the number of perturbers per unit of volume.
Now, if, in a straightforward if somewhat laborious manner, we substitute the results of Eqs. (6.82b),
(6.83b), (6.85), and (6.86) into Eq. (6.64a) we obtain:

[

l=N41rxl:
8

I() = f e Y cos [ky + 1¥(y)] dy (6.87)
0
where: ®(y) = j [(1 - cos%) (y —x) — smlx° + 2x] dx
+j[(l—-cos —{) (x —y) —sin—i—};— x°+2y]xdx (6.88a)
¥y = /[(l—cos T)x°+sm—2— (y—-x)]
0
+/|:(1—cos —i%)x‘-l—sini—{—(x—y)]xdx (6.89a)
v

The fact that &(y) and ¥(y) may not be evaluated directly should hardly come as a surprise. Let us con-
- o0

sider ®(y). We may transform this function into a sum of the form [ + [ . The integral with limits
0 v

zero and infinity may be evaluated exactly after Jensen.® The other integral may be expanded in a series,
and it can then be shown that for y > 1 this integral may be neglected. The integrals in #(y) may also be

® y
written as [ + [ . Again the integral with limits zero and infinity may be directly evaluated, and it is
0 o

found that, when the latter integral is expanded in a series, this remaining integral is small for y < 0.5.
The integrals were numerically evaluated by Lindholm for 0.5 < y < 1, and he concluded that the result
for y < 0.5 could be extended up to approximately y = 1. In this way Egs. (6.88) were found to be:

&(y) = 0.795 y + 0.165 for y > 1 (6.88b)
8(y) = 0.369 y* + 0591 Vy for y <1 (6.88¢)
¥(y) = 0577 y + 0.227 for y >1 (6.89b)

¥(y)=0213 y*# + 0591 Vy for y <1 (6.89¢)
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When 1igs. (6.88b), (6.88c), (6.89b), and (6.89¢c) are substituted into Eq. (6.87) the result is:

Iv) = Iy + I, (6.90a)

where:
1 - .
I, = Ofe-'f°'369""'+°-59”/“ cos [ky + 1(0.213y*”® + 0.591 Vy)] dy (6.90b)
I, = 701681 fo—HOTON oo [y(k + 0.577 1) + 0.227 1] dy
1

_ ,~oseor 07951 cos (0.8041 + k) — (k + 0.5790) sin (—0.8041 + k) (6.90c)
(0.7950)2 + (k + 0.5770)°

Numerical calculation is required for Eq. (6.90b), and in a general form this is as far as Lindholm carried
the calculation. Let us now consider some of the special cases of Eq. (6.90a).

For very high pressures I, as given by Eq. (6.86e), is obviously very large. Itis apparent from Eq. (6.90c)
that we may neglect I ,, under these conditions. In Eq. (6.90b) the integrand, due to the behavior of the
exponential with large [, will be very small unless y is very small. When y is small y*® <« y'/? 50 that we
may write:

I0) = I, = [e Vi1 cog [ky + 1(0.591 \/;f)] dy

0

= \f 3 (g—%lwi exp [“ f;"’fi?z] = N <v>05 (ay)~52 g=N'Culas (6.91)

for k < 0. I(») = 0for k > 0 which means that the line is displaced to the red, and the intensity falls to
zero at the frequency of the undisplaced line. In addition to this agreement with Margenau’s statistical
predictions, a comparison of Eq. (6.91) with Eq. (6.42) shows that Lindholm’s line shape has reduced to
Margenau’s statistical shape for the case of high pressure. If weletx = 16 _ 1.7 instead of 0.75 as given after
-
Eq. (6.42) we obtain exact agreement between the exponentials in Eqs. (5.42) and (6.91). Since the statistical
theory had yielded such excellent agreement with experiment at high pressure Lindholm chose 16 as the value
.
for x on the basis of this resulting agreement. Lindholm justified his disagreement as follows:
First, let us recall that the time duration of the collision is essentially 2« and consider Fig. (6.5).

¢
Curve (a) in this figure is the actual curve for the phase integral 2nb / & Curve (b) is the
e + .

Lenz approximate curve where x = 0.75, and curve (c) is the Lindholm curve where x = 1.7. Lindholm
felt that the larger x value is more justified in that it includes the slow frequency shifts at either end of the
true curve (a).

Now let us consider the special case of Eq. (6.90a) corresponding to Lenz’ calculation for low pressure
and spectral positions near line center. Lindholm took N and (v — »,) small enough so that Eq. (6.86¢)
goes to zero, and as a result, Eq. (6.90b) becomes I, = 1. Now let us expand Eq. (6.90e) in a series and
keep only second order terms in ! and k. The result is:
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I, = L+ Iy = 14 (1 — 9602 L7950 = (k+ 571D (k + 804D
(195 + (k + 57712

227
1— (k4 5770 = — 1651
-  + ).795
(795 )2 4 (5771 + k)2 (6.92)

A comparison of Eq. (6.61a) and (6.92) is in order. It can be seen that, from the above equation and
Eq. (6.86¢), the line shift and half-width are given by:

2wk [ 3% :ll (4
<v> L8<v>
5/2 = a9%1 2.68 N<y>3/5 p2/5 (6.93b)
[

The linear dependence on the pressure and the dependence on the temperature through <v> of both
the shift and the half-width may be noted from Eqgs. (6.93). We may compare this with Eq. (6.62). Before
doing so, however, it will be necessary to rewrite Eq. (6.62) slightly. The constant b differs from the constant
a in the latter equation by virtue of the fact that Lenz used units of angular velocity w while Lindholm
utilized units of frequency .

Thus Eq. (6.62) must be multiplied by the factor 51— . (2r)%5, and one obtains 2.65 instead of 7.977. The
.3

difference between these two equations arises chiefly from the fact that Lindholm used only the mean relative
velocity, while Lenz used a distribution of velocities. A reasonable basic agreement exists between the two
theory results, however.

Having considered the Lenz and Margenau limiting cases, let us turn our attention to the behavior of
Eqgs. (6.90b) and (6.90c) in the wings of the line. We consider Eq. (6.87). Using Eqs. (6.88b), (6.88¢c)s
(6.89b), and (6.89¢c) this equation may be written as:

I(v) = [ e-103600+0591Vu] cog [ky + 1(0.213y42 + 0.591\/;)] dy
0
-] p—
— [ e~ U036957+0.591Vu] cos [ky + 1(0.213y4% 4+ 0.591Vy)] dy
1
+ [ 10T o5 [ky + 1(0.57Ty + 0.277)] dy (6.94)

For k very large the cosine function, and hence the integrand will fluctuate very rapidly for large y
resulting in the usual cancellation effect. Thus, we may restrict ourselves to small y. As a result of this
restriction, the first integral in Eq. (6.94) makes the greatest contribution to I(v). In evaluating this integral
— a rather lengthy operation — Lindholm utilized the substitution ky = 2? which allowed him to expand
certain portions of the integrand in power series to arrive at integrals of the form:

0 © a+l4n "
—atistay, -"@) "2 r a+1+n)_8__
6r ¢ 2dz ifo( )@ ( 2 n!
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He thus obtained the following two equations for the red and violet wings of the line respectively:

0.7411 | 02541 01298 0532 D
N (—kp"2 + (=k)7h - (—k)* + (—K)r7e (6.95a)

I(y)

05071 0.6147F  0320P
I6) = k1 . kir/e + k1o/s Foeee (6.95b)

Eqgs. (6.95) result from the evaluation of only the first integral in Eq. (6.94). Lindholm found by
evaluation of the remaining two integrals in Eq. (6.94) that the largest contribution of the neglected integrals

0.071 . Thus, error in Egs. (6.95) amounts to around _0_9"‘1_1_ .

amounted to

If the first term in Eq. (6.95a) is taken as the expression for the intensity in the red wing, agreement
with the expressions of Kuhn®” and Margenau'" is, of course, obtained. The earlier verification of Kuhn's
expression for the intensity distribution in the red wing in the case of Na broadened by A as obtained by
Minkowski*® and in the case of Hgbroadened by A as obtained by Kuhn® provides experimental justification
for the Lindholm result.

Let us assume that the first term in Eq. (6.95b) is sufficient to describe the intensity distribution in the
violet wing. When a comparison of this expression with the measurements of Minkoweki'® for the violet
wing of the Na D, line broadened by A4 is made, really excellent agreement is obtained. It might be men-
tioned here that, although the (Av)™¥? dependence had been previously obtained for the red wing, the
(A¥)™7* dependence had certainly not been previously obtained for the violet wing. Minkowski®®® had
attempted to use a (Av) ™2 dependence without the success which attended Lindholm’s utilization of (ar)~7s,

It should be recalled here that the results which have been obtained are predicated on the assumption
of a van der Waals interaction between emitter and broadener.

Lindholm obtained more general resul:s than Lenz had obtained primarily because he assumed the same
relative velocity for all perturbers, a not very serious approximation. Thus, his method of including the time
of collision in the Fourier analysis yielded, for the case of van der Waals forces, Eqs. (6.90) which can be
evaluated for specific cases.

Kleman and Lindholm 8™ experimentally investigated the broadening of Na lines by 4 and obtained
excellent agreement in shift, half-width, and line contour with this theory.

6.12. A MAXWELL DISTRIBUTION OF DIPOLE MOMENTS AFTER COLLISION

The reader may have noted with some alarm the manner in which we have blithely bypassed the impor-
tant work of Spitzer'” on the subject of Interruption (ifnpact, collision, velocity, etc.) broadening. We
might perhaps explain the basis for our continued deferment of this discussion.

To this point it should be quite apparent that our Interruption considerations have been almost
wholly classical ones. In addition, we shall find that several more classical considerations of the phenomenon
await our perusal. Spitzer’s attack on the other hand, is launched from a primarily quantum mechanical
point of view. Thus, it appears reasonable to defer the work of Spitzer, as well as that of Foley"” and Karplus
and Schwinger® until we have completed the preponderantly classical theories of certain other authors. On
this basis we shall next consider a 1945 paper of Van Vleck and Weisskopf.1*

We have called attention to the fact that the Lorentz theory is technically not 2 Fourier transform of
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either the motion of an electronic oscillator or a broken off light wave — and we might just as well be techni-
cally correct where our limited capacity allows — but we have also noted the general tendency to attribute
this Michelson type treatment to this author. In the paper which we shall now consider, van Vieck and
Weisskopf set out to consider certain phases of Lorentz’ theory, and indeed they do consider Lorentz’ theory,
These authors are of the opinion that, ‘“The literature of collision broadening is dominated by two names —
those of Lorentz and Debye. . . . 87 and they proceed to set about a revision of Lorentz’ development such
that an agreement between the work of these two ‘‘dominating” figures is obtained. In essence this revision
consisted in substituting for the Lorentz distribution of x and £* after collision the Maxwell-Boltzmann
distribution. Let us be specific.

Van Vleck and Weisskopf defined two types of collisions, strong and, yes, weak ones. Following a
strong collision the molecule retains no ** ‘hangover’ or memory” of its precollision orientation. Adiabaticity
is also assumed here, and in this connection, the adiabatic character assures us that the electric field of the
light is a constant during the very short time of the collision, i.e.:

Ecos(wt) = Ecos(wty)

The difference between this and the Lindholm theory is apparent. Weak collisions, on the other hand, leave
the molecule with a hangover. The assumption of strong collision yielded Eq. (1.86) which we write down:

) 4xNuy®:  wr (1.86)
¢ 3T 1 + w?r?

This is Debye’s equation for the linear absorption coefficient which we obtained in Chapter 1 after the
fashion of Van Vleck and Weisskopf. Let us recall that » appearing in Eq. (1.86) relates only to the fre-
quency of the incident radiation, and that nowhere does any natural frequency of the electronic vibration
(in the classical sense) appear. Thus, one might consider Eq. (1.86) to broaden a line of zero frequency
through a collision mechanism. Van Vleck and Weisskopf regard this as *“ . . . a theory of spectral shape for
a non-resonant line . . .”*7 In order to determine the quantum mechanical analog of Eq. (1.86) we may
recall that, instead of integrating over cos wt as in Eq. (1.86), we sum over the various quantum states.
We obtain the same result, however, since here also <cos? > = 1/2. Thus, we need only consider

Eq. (1.86).
From the Lorentz theory we obtained in Chapter 1:
L _ 2nNe <3)[ 1/r _ 1/ ] (1.782)
me \wo/L(w — w)?*+ (1/7)* (0 + w)® + (1/7)?
The equations,}
s =i }E; wii | %33 | o) (6.96a)
s =2 1w (6.96b)
mce

* See supra, Chap. 1.
1 See Appendix VIL.
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tell us that we must needs replace 1/m by g-}v,-,- [ xi; | *in Eq. (1.78a) in order to arrive at a quantum analog

of this equation. In Eq. (6.96a) ex;; is, of course, the matrix element of the electric dipole moment* — if

it is electric dipole radiation that we are considering — between the states i and j. In addition, it is apparent
that a temperature distribution of the molecules over the various stationary quantum states according to
the applicable Maxwell-Boltzmann law must be imposed and a subsequent summing over the possible transi-

tions introduced. These three modifications in Eq. (1.78a) result in:

~Wj /kT
<4nNe2) 12'2‘, P xii |2 vz, v)e *
*= 3he T o WilkT

j
where the “shape factor” is given by:

) - l Ay . Av
SGii®) * [(w,’ = Q) () (A”)J

Av = 1/2x7

Let us write:
22 | xi [ foug)e T = 22 (] P flois v
7 FE.13

+ | xj; [ f Gigy e V¥ = 22 | x5 |2 flvis, ¥) hvij —wine
$i 2kT

gsince:
v = v fipv) = =f i v)s | x| = | x5 |
and:
€V —e™) = dx(eV + e V) forx K1
so that Eq. (6.97a) becomes:
6c

kT e VilT

7

with the shape factor still given by Eq. (6.97b).

(6.97a)

(6.97b)

(6.97¢)

(6.98a)

(6.98b)

(6.99)

Now if Egs. (1.86) and (6.97a) are truly equivalent, as it would appear they should be, Eq. (6.97a)
should reduce to Eq. (1.86) for »;; = 0. It is apparent that instead of this reduction we simply obtain zero
for Eq. (6.97a). This discrepancy was remedied by Van Vleck and Weisskopf by utilizing a Maxwell-
Boltzmann distribution for x and x instead of Eq. (1.57) as a basis for obtaining the constants C; and C, in:

x = __Ee € + Cie™* + Cpe™
m(w02 - wz)
From Eqs. (1.49) the Hamiltonian for our vibrating electron is surely:
p2
H(t) = é_+ } (wox)®m — ex E cos wt
m

* Van Vieck-Weisskopf allow either magnetic or electric moment.

(1.52)

(6.100)
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Then the right side of Eq. (1.58a) instead of being zero will be x averaged over the Maxwell-Boltzmann
distribution for Eq. (6.100). The right side of Eq. (1.58b) will still be zero, however, since:

. 4o __pt 4w
[fp exp [—H(t)/kT] dxdp !;pe 2mk7‘dp__£f(x‘)dx

) = Fw
[fexp [-He)/kT)dedp [ [ f(x:p) dudp

_ P e oo
—mkTe 27 |, [ f(x)dx
o= -0 = - 0
+w
JS fp) d= dp
Thus, Eqs. (1.58) now become:
+-00
Ee , , S[ = exp [—H(t)/kT] dx dp
m(w2 — wz)‘ew(t—ﬂ) + Clrem(t—x?) + Czle—wo(t—x?) =A4= —-oo+°° (6. 101a)
’ [ [exp [—H(t)/kT] dx dp
_ Feiv <0 L Clinge™® ™ — junCle™ D = 0 (6.101b)
m{wo? — o)

Egs. (6.101) may be solved in a very straightforward manner to yield:

G/ = G+ AC = G + ;‘;e‘m (6.102a)

G =G+ AC = G + 2ﬁ ot (6.102b)

where the C are now given by Eqs. (1.59) and ¢ = ¢t — &.

2
Letting a = 2—"%,},, = g——’:’—;', = e_E%)TsTag » we may integrate A by parts as follows:

+o . 00 . +® .
fxe—bz +czdx fe—ap dp f xe —bz +czdx
— 0 - .~

4 =3 . = T Je
fe =bz +czdx fe —ap dp fe—bz’-i-czdx
-0 -—o0 -0
+ o +w—bz’+cz
- _ —I—e"e"b" +_C_‘[i, dx _ C _ 2eEcos ut
2% B g, B ma (6.103)
As a result of Eq. (6.101):
ACE™ = AC,e™ o = eE cos o, (6.104)
mwo’.

It is now evident that to Eq. (1.60) is next added the term

Fe Ee

e 008 (uh) con e = 1) = -2 B[ (4 ] (6.105)
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and the thus amended version of Eq. (1.60) yields, according to Eq. (1.61):

= .—_EE.._eid_._ — (wo + w) (4)/ wo"r (“’0 — w)w /wol,r .
<x>=R [m(woi - ) { 1 SI/r = (o = o] + STU/r F ia + 0] }] (6.106)

In analogy to the method of obtaining Eq. (1.78a) we may then obtain:

o= 2zNe* (o} 1/r 1/r |
mc (wo> [(w — we)? + (1/7)? + (w + w)? + (1/7)2] (6.107)

In analogy to the manner of obtaining Eqs. (6.97b) and (6.99) from Eq. (1.78a) we may now obtain
Eq. (6.99) from Eq. (6.107) where here:

_”_[ Ay + Av ]
vl — )2 4+ )2 (v + 92 + (A (6.108)

fon) = &
T

Utilizing Eqs. (6.99) and (6.108), we do indeed obtain Eq. (1.86) for the case of zero resonant fre-
quency, v;; = 0, and &*Z | x;; |* = u? which at least is of import in resolving the paradox in the low fre-

2
quency region. Eq. (6.107) on the other hand, offers little change in the visible region, the (ﬁ) factor yield-
wo

ing slightly more line asymmetry.

In the treatment so far we have discussed the case of strong, hangover-free collisions where the Maxwell-
Boltzmann distribution may be imposed after the collision. Van Vleck and Weisskopf somewhat after the
fashion of Kauzmann®® and Kronig® # obtained the Debye formula for the polarization for the case of
“collisions of arbitrary strength.” We shall not detail this calculation, since it essentially is a treatment
for the limiting case of »;; = 0. We might mention the basic premises involved, however.

A, do’ is the probability that after collision the dipole which originally vras oriented in the solid angle
dw is oriented in the solid angle dw’. In the absence of the field 4, is a function f($) only of the angle ¢
between dw and dw’. The following situation applies: For a strong collision f(#9) is independent of ¢, and in
the case of weak collisions, since a strong carry-over effect is assumed, f(9) is only appreciable for small ¢.
Finally, in the presence of the external field, we assume the states w and «’ to be Maxwell-Boltzmann weighted
and the usual “detailed balance” or equal in-out relation,

A, exp (uE cos ¢ cos wt/kT) = A, exp (uE cos ¢’ cos wt/kT)
holds.

Van Vleck and Weisskopf also make mention of (1) adiabaticity and (2) dispersion of r as limiting
factors on our Eq. (6.105).

Reference (1), we should recall that here we have specifically defined adiabaticity as the condition in
which the frequency of the light wave is much smaller than the reciprocal of the duration of the collision,
v K 1/7, 80 that during a collision Ecoswt = Ecoswt,. This condition allows our dipoles to settle down suffi-
ciently after the collision so that the Maxwell-Boltzmann distribution may be applied to this pseudo-
equilibrium configuration. Although the point is not stressed by these two authors, this is certainly an
approximation which obviously could not be fulfilled immediately after a collision. It would appear to be a
reasonable one, however. If, on the other hand, one considers regions other than the microwave (in which
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regions these authors appear primarily interested) where » ~ 1/7, then it would seem more acceptable to
maintain the Lorentz approximation, especially since said retention makes no very appreciable difference,
<x> = 0 leading to Eq. (1.78a).

With respect to (2) Van Vleck and Weisskopf felt that if the molecules of the assemblage were dis-
tributed over various classes relegated to varying values of r then the final averaging of the formula over
this 7 distribution would yield line shapes more nearly corresponding to those observed. This may be the
case.

In toto this theory seems to have contributed the idea of Maxwell-Boltzmann distribution to the Lorentz
theory, that is, insofar as line broadening is concerned. From our point of view, we have not much affected
the final result, but have perhaps placed it on a more firm foundation in the microwave region. We shall

later consider Karplus and Schwinger’s work ® which established a quantum-mechanical basis for this same
theory.

6.13. DETAILED BALANCING

Now let us complete our classical consideration of Interruption broadening with the refinements intro-
duced by Van Vleck and Margenau.!®® The ruminations of these authors did not serve to actually change
the shape of the proposed absorption line, but they did finally show that the shapes of the spectral lines* are
the same in emission as in absorption, a point of no mean import. At any rate, since we accept the thesis
that the integrated absorption and emission balance each other — in a Rayleigh-Jeans radiation field, which
we shall mention in a moment — detailed balance of emission and absorption results from this equivalence
of absorption and emission line shapes. That is, a given frequency interval absorbs as much as it emits.
The balance was obtained by a hitherto untried technique, that is, the summing of the work done on the
oscillator by the electric field at collision as well as during the intercollision intervals, This yielded the same
frequency by frequency power as that emitted between twe collisions.

If our oscillator motion is described by x(t) = x, cos (wit 4+ ¢) where ¢ is, of course, the phase constant,
then Egs. (6.4) and (6.5a) with M(t) = x(t) yield the Fourier analysis of x(f). We may then integrate the
expression for x(w) (corresponding toJ(w) in Eq. (6.5a)) and average | x(w) |* over a random distribution of
¢ to obtain a result which when utilized for x in Eq. (1.61) yields:}

,_ 1 1
| 2) = 4 [a"' F oo  dF @ T w)’] (6.109)

where now a = 1/7.

A point charge e which is oscillating in one dimension radiates power of amount:**

dw 2 é .,
— = e e X
dt 3 ¢
From the equation for simple harmonic motion x = —w?. In addition, normalization of the Fourier

components requires:

* These authors refreshingly refer these spectral lines to the classical harmonic oscillator, and one is then presumably free
to accept Weisskopf’s proof of oscillator-atom equivalence or not as one sees fit.

1 In evaluating Eq. (6.5a) we have taken the limits 0 and ¢ where 9 is the time between two collisions, thus integrating
x0 co8 (wt + ¢) over the time between two collisions to obtain x(w).

** Sec Appendix I1X.
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] +o ®
Fleonde = 2 pdo =2 F 12t0) P o

-~

so that:

# = =t 1) = ot |a) P
We thus obtain for the power emitted by the oscillator in the frequency interval between w and w + dw:

Py’ (@) do = gg 26t | 2(w) [ do (6.110a)

This must be modified to include the intervals between all collisions over a long period T, however, since
the Fourier analysis has only been carried out over one such period. As a result, Eq. (6.110a) becomes:
aTPg’ (v) do _ 2¢

%8 90t | 2(w) |2 a do (6.110b)

Py () do =
s (@) T 33

Substitution of Eq. (6.109) into Eq. (6.110b) then yields:

= e_z_..xo? 4[ a a ] 111
i =Rl (w0 — w)? tar (wo + w)? (611D

Now in order to obtain detailed balancing, we must needs show that P4(w), the power absorbed at the
frequency w, corresponds to this.

Let us suppose the electric vector ot the incident radiation to be given by Ecos (wt + ¢), and, in addi-
tion, collisions to occur at ¢ = #, &, . . . If the velocity proportional viscous drag force gx is dropped from
Eg. (1.49b) the Van Vleck-Margenau equation is obtained as:

4+ wlx = e—lgi‘xcos(wt-i- ®)
m

and a solution of the form:

xmforty Stk
x=xforty Lt <ty
ete.

is sought under the Lorentz boundary conditions x;(t;) = #;(t;) = 0. The following integral forms satisfy
the boundary conditions and the equations of motion:

£t

% = eE, j cos (wt — wA + o) sin woA dA (6.112a)
Mo J

t—t;

x; = eks / cos (wt — wA + @) cos wA dA (6.112b)
m
0
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Tt appears rather obvious that the work done by the field on the oscillator of charge e between collisions is

4+1
W = ZfeE, cos (wt + ¢) x;dt (6.113a)
i :
or, by Eq. (6.112b)
Y ¢
eE.?
W = ” E/ cos (wt + ¢;) dt/ cos [w(t — A + ¢;)] cos w, A dA (6.113b)
m
0 0

where:

0]' =ty — L and p; = wt; + ¢

The total time of observation can be chosen as, say, T, and the distribution function for the inter-
collision times may again be taken as ce™*® d# in analogy to Eq. (1.61). We may evaluate ¢ from:

a?

o0
T=c/e““"0dt9= L
0

o0
and subsequently substitute a*T [ ¢™*° d¢ for the sum in Eq. (6.113b). Then, using the well known trigo-
0

nometric relations for cos (@ & b) and sin (a & b) and a large sheet of paper, one may reduce the resulting
equation to one which, when integrated over a random distribution of the ¢;, yields:

o 0V t
W = "’i;."iz @T f e do f dt f ¢08 wA co8 wo A dA (6.114)*
™ 0 0 0
We shall accept the formula:
-] 4 ®
a/e"“" da/f(A) dA =/e"""f(A) dA
0 0 0

by means of which Eq. (6.114) may be integrated to obtain the work done by the field between collisions.
As a consequence, the average power or work per unit time is:

L ezEz’[ a L@ ] (6.115)
T dm La? 4+ (w — wo)? a® + (w + w)?

The work done by the field at collision will be obtained. The Lorentz boundary conditions require that
x; (t;4,) be zero. Since the oscillator will have some displacement x; (t;4,) ;probably not zero, an instantane-
ously infinite velocity of the oscillator is required so that the displacement change may occur in zero time.
Since the authors do not appear to claim that this corresponds closely to physical reality, it would not appear

that too much complaint against it as a mathematical device is in order. At any rate, in complete analogy
to Eq. (6.113a) we obtain:

* Van Vleck and Margenau give a here in place of a?, but their previous calculations together with those that follow tend
to indicate a misprint.
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tig+T
W,=1lim [ ¢E, cos (wt + ¢) x;dt

10 ‘J'+I—T

tig+T by, +T
= lim 2 [eE, cos (wt + ¢)xj] + imZ [ weE, sin| wt+ o] x;dt
10 j by —T T30 5 §iy,~T

= lim 3 [eE, Cco8 (wt + ¢)xj(t,‘+1 + T) - eE, co8 (O)t + go)x, (tj-f-l - T)] +0

T0 5

= - ZeEz cos (wt + @ x,-(t,-+1) (6.116)
J

by virtue of integration by parts and the fact that as t — ¢;;; minus, x — x;(¢;;,) while as ¢t — ¢;;, plus,
x — 0. Eq. (6.112a) then tells us that we must add the term

SE2
mw

0.
2‘ co8 (an?, + ¢j) J’ co8 [w(dj - A) + (p,'] sin Wo AdA
7

to the right side of Eq. (6.113b). This equation may now be dealt with as was Eq. (6.113b) to obtain the
power term:

d R w — w w + wy
a? B

4 mo + (0 — w)? a* + (0 + w)? (6.117)

which when added to Eq. (6.115) yields:

w ol a a
P = e = x _— .
4) T 4muw, [a’ 4+ (0 —w)? at+ (w+ wo)’] (6.118)

A consideration of Eqs. (6.111) and (6.118) is sufficient to show that detailed balance has not been
obtained if for no other reason than that the shape factors as given by the brackets in the two equations
differ. Van Vleck and Margenau overcame this difficulty by passing from the Lorentz to the Van Vleck-
Weisskopf boundary conditions on x and % at collision. We have shown in some detail how this transition
added the terms as given by Eq. (6.102) to x and subsequently added to the absorption coefficient resulting
in Eq. (6.105). It should suffice here to say that a similar computation adds the term:

e’E,a[ w? — wwy w? 4 wwy ]
4ma? La?+ (w—w)?  a®+ (0 + w)?

(6.119)

to Eq. (6.118) to arrive at the power absorbed from the light wave as a function of frequency.
We let T (w)dw be the energy density in the field for the frequency interval w to w + dw. Then this
quantity is given by

T(w)dw = =

—}— <E'> <sin?wt>
4 4=
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when we substitute for the mean value of the sine squared term. E? is averaged over the directions of
polarization. We agree that:

E*=E?!+ E}!+ Eg?
so that: <Ej2> = 3 E;

which yields: To)de = 8_3_ B
x

Let us diverge for a moment.

We might recall that the principle of equipartition requires that the mean kinetic energy associated
with a degree of freedom by } kT. Then since the mean kinetic energy, <imwgx,? cos? wyt>, is the same
as the mean potential energy, <} mwgx;? sin® wt>, for the oscillator we may reasonably expect the mean
total energy of oscillation to be kT. Likewise, } mw#r,? (sin? wet + cos® wt) = kT, so that

ot =2 ‘,fz"'

mey?
Jeans’ number, which specifies the allowed number of proper vibrations in a wave number interval, will
prove useful here. Let us recall the solution sin (27rk —;) sin (211—;-:) 8in (2m—zf) to the wave equation
Viy - —c}{ ¢ = 0 when we impose the boundary conditions, standing waves in a box of sides X, Y, and Z,

Surely our wave numbers will be:
- k. | - m

Fr=— s By = By = —
Y

X Zz

and we form a three space of these wave number components. It would appear to follow that the number
of different proper vibrations in the wave number interval di, di, dé, (Jeans’ number) is:

dZ = dkdldm = di d5 45, XYZ = dV - V (6.120a)

where d¥ is a volume element in wave number space and V is, of course, a volume in ordinary space.
Now surely d¥ = 4x%3?d5, so Eq. (6.120a) becomes:

dZ = Vix'5dy (6.120b)

We, of course, recall that v = c and also that electromagnetic radiation is possessed of two transverse
components. Utilizing these two facts we obtain from Eq. (6.120b):

8nl?

dZ =V dv (6.120c)

Eq. (6.120c) gives us Jeans’ Number for the number of proper vibrations in the frequency interval dy,
but we still desire an expression for the energy density of the radiation. It would certainly appear reasonable
that we could obtain this quantity by multiplying dZ by the mean energy for each proper vibration, which
we may recall is kT. Thus:

d£ 8x1?
Tu)dv = == kT = kT4,
()dv 7 " y

or: Tw)de = “i:’g do (6.121)
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Eq. (6.121) is the well known Rayleigh-Jeans radiation law.

Thus, we replace E,? by,
4 mww?
Br=g=a (6122)

2z

in the sum of Egs. (6.118) and (6.119) to obtain:

c2x,? a
Py(w) = 2% 4[ @ ]
alw) 37"‘:3‘0 @+ (w) — w)? + a + (v + w)?

(6.123)

A comparison of Egs. (6.111) and (6.123) shows that a detailed balance condition between absorption
and emission has indeed been obtained by considering, in absorption, the work done by the field (a) between
collisions and (b) at collisions and by including the Maxwell-Boltzmann boundary conditions. In essence
a choice of methods was available for obtaining x for Eq. (6.110a). We could have (a) taken «® times the
Fourier analysis of x (as we did) or (b) taken the Fourier analysis of x for x. As Van Vleck and Margenau
note, method (b) would not have implicitly included the infinite accelerations at the time boundaries, and,
as a consequence, detailed balancing would not have been obtained.

‘We have remarked that the boundary conditions especially are an approximation. In an actual molecular
system, of course, finite collision times would have to be considered. In addition, the Planck radiation law
would more logically replace the Rayleigh-Jeans law. In the limit of low frequency, however, the former
reduces to the latter, so that, as in the case of the earlier van Vleck-Weisskopf considerations, the results are
particularly applicable to the microwave region.

6.14. ADIABATICITY LIMITATIONS AND ELECTRONIC STATE ROTATION

This essentially completes our classical considerations of interruption broadening, and we may now turn
our attention to some of the more quantum mechanical attacks on the problem.
We begin with Spitzer’s considerations which consisted of a demonstration of the errors introduced into

the theory by (1) the adiabatic assumption and (2) the neglect of the rotation of the electronic quantum
states. Let us first consider Approximation (2).

We consider the case of one perturber and one emitter. We further suppose the perturber to produce
an electric field due to its possession of a permanent or an induced dipole moment, quadrupole moment, ete.
This field will he radial about the perturber. We recall that the quantum number M specifies the component
of the angular momentum on somé space fixed axis. This axis is now fixed by the electric field, and, since
the field is radial, will be directed toward the perturber. Then as the perturber moves by the emitter, this
axis — and incidentally the remainder of the reference frame — will rotate so as to remain directed toward
the perturber. Finally, if M is to remain unchanged the atom must rotate with this reference frame. Thus
is the rotation with the perturber passage obtained. Now let us consider Fig. (6.6).

The perturber motion is assumed rectilinear of velocity v as indicated in the figure. The angle 8 is the
angle that the z-axis of the emitter frame makes with its direction at time of closest approach, R.

Now the radiation (we presume) is observed in the stationary frame (x'y’2’), and if one neglects rotation
— as had been done in the past — one would simply take the matrix elements of the electronic coordinates
(xyz). When one considers the rotation, however, the matrix elements of xsin ¢ + zcos 9, y, and
zin ¢ ~ xcos ¢ are desired instead.* This then is the source of error which is introduced when rotation

* The transformation involved is apparent from Fig. (6.6).
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is not considered. Classically, one can see that if a Jinear oscillator is rotated by 180° a phase change of
in the emitted radiation occurs. This in turn leads us from Spitzer’s objection to Approximation (2) to his
objection to Approximation (1).

We define an adiabatic collision here as before.* Extremely close and distant encounters present two
possible violations of this. 'We have noted, for instance, that the quadratic Stark effect which allows transi-
tions between states of different unperturbed energy, is only important for close optical collisions.t On
the other hand, a distant encounter in which the interaction is very weak may be considered. If during
such a passage adiabaticity is maintained, the oscillator rotates through 180° and the » phase change results
regardless of the weakness of the interaction. Thus, as Unsold2® has noted, the assumption of adiabaticity
for such distant collisions is an absurdity.

. ae . . . -1 [ @ . .
Spitzer, utilizing Schwinger’s computations'®! for the matrix elements,d ~! / Ve gﬂdr, in a rotating
4

coordinate system, carried out a calculation which led him to a minimum value for the phase shift on
collision which would allow the reasonable utilization of the adiabatic approximation.
The adiabatic equations
H()¢,(t) = E,(0)¥,()

are assumed to have the eigenvalues

@) = -k
orer
so that the adiabatic phase shift is given by:
+o 40 .
j 2=E,(¢) d s de
as = I s
h kB J (R + vu2)"/2

Spitzer showed that the adiabatic approximation is valid if

A
nKlr *
Par > Enllar | L (6.124a)
and invalid if
Pas < Cn A
A, — A, (6.124b)
where:
_ AT (=)
" r@Gn)
K, = .—1/\7’0% dr
at

% = Aq, ;| A, — A, | = 1 (lowest value)

Egs. (6.124) then give the Spitzer criteria for the utilization of the adiabatic hypothesis when the rotat-
ing electronic states are utilized. We might remark that when the rotation is ignored and adiabaticity is
assumed, the two incorrect approximations tend to compensate each other.

* See supra, Sec. (4.19).
t See supra, Chap. 4.
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Finally, Spitzer obtained* also a limit for the applicability of the Interruption analysis

n\1/n~1
v = w]| < _Ii(’i) (6.125)
27\c,q,

which restricts the validity in the line wings. The symbol P is the only previously undefined one in Eq. (6.125)
and this a rather arbitrary allowable error that is inserted.

Let us note that if we let P = 1, g,/ = 2xC, Eq. (6.125) very nearly (C,* = C,) corresponds to
Eq. (6.22), the earlier obtained wing limit for the Interruption theory.

Having determined the limits of applicability of the adiabatic hypothesis, we shall, with Foley,?” ignore
them in obtzining the Fourier integral expression for the line profile on the basis of the quantum radiation
theory. In addition, we shall now consider Foley’s phase shift solutions of the resulting Fourier integral in
which development the intriguingly entitled Correlation Functiont will arise.

6.15. THE FOLEY PHASE SHIFT SOLUTION

As has been our wont, we shall continue to treat the translational and hence the relative, motions of the
molecules classically. Now we are faced with precisely the problem we encountered, for example, in
Chapter 4. Eq. (4.196) will give us, when rewritten in Foley notation:

H = Hl(Phql) + H2(Pl9qlooi(t)) + Hs(Pl,qunqn) + H;(an.) (6'126)

where, as usual, H; is the unperturbed Hamiltonian of the molecules, H, that of the molecular interactions
responsible for our broadening, H; that of the molecule-field interaction, and H, is the Hamiltonian of the
unperturbed field. Our procedure now is similar to that which we utilized in Chapter 4 subsequent to
Eq. (4.196) except that now the matrix elements of H, will hardly be those of the linear Stark effect. Utiliz-
ing the correspondence, however, it is surely apparent that we will obtain equations corresponding to
Eq. (4.199a) as solutions:

i

/Kan(t)am (t) exp ["'i(Em - n)tM‘ (6-1278)**

a, =
and equations corresponding to Eq. (4.199a) as solutions:

a; = Sia; exp [— }K(E,- ~E; - hw,)t] - /’l{ o/ (Dan(®) exp[ - }r(En _ E,)t] (6.127b)

In Egs. (6.127) the V;; are the matrix elements of the molecular interactions and the S;; are the matrix
elements of the molecule-field interaction. Now under the adiabatic collision assumption Eq. (6.127a)
yields:

* Spitzer first outlined the method that should be used in determining the line profile as follows: (1) Set up and solve by
finding the a;(¢) the problem of a radiating atom perturbed by a passing particle — ion, or molecule. (2) Determine the Fourier
transform for the a;{(t) and sum over all such transforms squared to find the line profile due to a single encounter. (Multiple
encounters are neglected throughout.) (3) Finally, all such encounters are integrated over all collision velocities and closest
approach distances. Spitzer generally utilizes the method and then determines the error in simplifying this procedure so as to
obtain the Weisskopf result. This error is, of course, given by Eq. (6.125).

t The author encountered some difficulty in ascertaining just what this funetion was correlated with when correlated.
It quite obviously was correlated with something, however, since people have been recorrelating it ever since.

** This equation implies the sole existence of the two states m and n.



a,(t) =

Vinn (£)am(t) exp [

i
~2(E, — E)t
E, - E, (En ")]

A&
We shall substitute for V,, in Eq. (6.127b) from Eq. (6.128) to obtain:

ar= S;,a,- exp[—/;—{(E,- - Ef - hw,)t] - i fP/(l)
where P;(t) = E, — E,.
In analogy to Eq. (4.158) we now choose a; as:

¢
i fp.
ot — Pia
) a; = e e~ A {
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(6.128)

(6.129)

(6.130)

and we may now solve Eq. (6.129) for the probability amplitude for the emigsion of a quantum of frequency

Wet

A, (T) = exp [— /}( /T P,dt] fT dt S;; exp [—7T - ,?lr ] (Pi(t) — P, (£) dt + iwt:l (6.131)
0 0

where v = w;; — w,

If the natural line width factor v is neglected and the time of collision T is extended to infinity, we

essentially obtain the Weisskopf expression for the Fourier amplitude.

As we have noted on several occasions, the Fourier amplitude may be written as:

A(w) = VN fdtexp[—i [Px)dx + iwt]
0 0
where P(t) = Py(t) — Py(t) from which:
Iw) = N? dy fdt, exp [ — ifP(x)dx + iw(ty — )]

which becomes, when we lett; — & = rand &, = t;:

400 ® tot-r
Iw) = Nfd‘r fdto exp[ —i f P(x)dx + iwr]
-0 0 to

= R{N of dfof”dz exp[ — i':f'P(x)dx + iwr])

Now let us introduce the so-called correlation function as:

totT
exp[— i f P(x)dx]
to

where now, from Eq. (6.133b)

@ totr
<y(r> = bf dyexp| — i [ P(x)dx]

(6.132)*

(6.133a)

(6.133b)

(6.134a)

(6.134b)}

* We have given Foley’s derivation of the state growth equations. Let us remark that Eq. (6.132) could have been obtained

with no difficulty whatever by simply rewriting Eq. (4.162) very slightly.
t C£. supra, Eq. (6.32).
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is a ... measure of the average correlation . ..” of Eq. (6.134a) over the interval r. The integra] in
Eq. (6.134a) may surely be approximated by the phase shift approximation as:

tordr "
‘ J Px)ds = zla,. (6.135)

under the assumptions that (1) the time interval involved is long in comparison to the duration of the colli-
sion (2) which is vanishingly small. These th:en result in the approximation of the sum of an integral number
of collision phase shifts as given by Eq. (6.135). The fact that this approximation is applicable to the case
of low densities and high velocities arises out of assumption (1).

Let us first refer to Eq. (1.56) for the probability that the molecule will undergo a collision during 7

where as always 7 is the mean time between collisions. Note that = = 4 the number of collisions during
7o

time 7.* As in Eq. (6.66a) the probability of n collisions in time 7 is given by (1) l—e”/" . From

T/ n!

Egs. (6.134b) and (6.135) the average value of the correlation function for this case of n collisions is:

n n 00
/dto exp[ —1i Z;x,-] = 'II:_-f da p(a) (cosa — isina) = (4 — iB)" (6.136)
3= twm] -

the p(a)da being the distribution in phase shifts. Thus, 4 and B are the average values (4 = [ dap(a) cos a,
ete.) of cos a and sin « respectively.

Now Foley established a cut-off distance po, time 7o, and phase shift a; for the intermolecular forces
which may later be extended. We have already averaged over n collisions, and Foley completed the calcula-
tion and obtained <y(r)> by averaging over the various possible values of n as follows:t

2 e 2\, 4 —iB .
<y(r)> = Z : (—-—) (A ~iB)" = exp [ r — —] (6.137)
n=0 n. To To To

since the series is the well known one for the exponential.

* Jablonski®® objected to Foley’s utilization of '-:-e“’/ ™ for the distribution of collisions. He felt that a Maxwell-
[}
Boltzmann distribution was called for, but, as Foley®® pointed out, the random distribution for the broadening case seems to
have precedent if nothing else, as justification. This would not appear to be entirely conclusive.

t Mizushima!* raised the objection that * ... His derivation of . . . Eq. (6.138) . .. is inadequate in that he replaced
the sum of averages by the average of sums . . .1 A little consideration serves to clarify Mizushima’s contention. On the
left side of Eq. (6.136) there is obviously a sum over a. Now the individual terms of this sum are not reproduced by assigning
various values to n, but, traced back through Eq. (6.136), various sums result in Eq. (6.137). Thus, the average in Eq. (6.137)
is one over sums, as Misushima noted. Misushima carried through this calculation in what appears to be the more proper order
to obtain:

I() = :c_ m—" (6.137a")
where: 8= fF(s) (1 — cos ag) ds/2x (6.137b")
A = [F(s) sin ap ds/2x (6.137¢")

and F(s)ds is the number of collisions with collision parameter between s and s + ds per unit time.
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The direct substitution of Eq. (6.137) into Eq. (6.133b) yields:

8
I(w)=£{Nofdnxp[“;lf—i3;“’f]}

_ (1 = A)/xro
[(1 - A)/‘ro]’ + [B/‘ro - (4)]2

(6.138)

It is quite apparent from Eq. (6.138) that we have obtained a line center shift of B/7. The half-width
2(1 — A)
7o
proportionality exists. The constants occurring in Eq. (6.138) may be evaluated in a quite straightfor-

ward manner.

We commence by supposing interactions of the form ¥ = ghy~? so that the phase shift « is given by:

is, of course, . Since 7, appears in both shift and width results, it follows that a linear density

vV — Vj / B: — ﬁf Y 6
- i i = 1. .139
@ _/ h (o* + vz,z)p/‘l vpp—l ( )
where v is, as usual, the relative velocity and p the distance of closest approach.
. Eq. (1.13) tells us that:
1_ e N xptv (6.140a)
To I

where v is the mean relative velocity and [ is the mean free path. Now, however, let us introduce a normal
ized distribution of velocities f(v)dv and a distribution of interaction force constants g (not a continuous
distribution). The reason for the latter distribution should become apparent when we recall the dependence
of this interaction constant on the molecular states involved. When these two distributions are applied
and averaged over, Eq. (6.140a) becomes:

Lo )y [ dos@ 61w ot (6.140b)
0

which is surely the expression for the number of collisions which produce a phase shift greater than our
cut-off phase shift a. Eq. (6.140b) may be rewritten according to Eq. (6.139) as:

@
N Z f doso 23 /O P9/ ea-)
= V) & ¥
- 8 2D

/(1)
= Nrx ‘f_: g <o oo (6.140c)
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The line half-width has been determined as u or
To
+a +®
-2 [1 —/ cosap(a)da] =E—[1 + /[2 sin? — — 1] p(a)da]
To To 2
-0 ~l
4 ., @
= ___f sin? — p(a)da (6.141a)
70 2

Since:
-+

/p(a)da=1

-0

Foley took 1 pla) da as:
)

D 7k2/(Plc-1) & f(v) o (P—3) /(P—1)

1
’1‘_; pla)da = @B (57T (6.142)*
where D is a normalization factor.
When Eq. (6.142) is substituted into Eq. (6.141a) the result is:
®
2/Pp~1 . o
= Y (Pp—3) /(Pg—1) d o sin? a/2
8 8 TN Z gk (pk _ 1) <v > / I o I(pk+1)/(pk"1) (6-143)1’

Integration may be carried out from zero to infinity (and the result doubled) in the case of all phase
shifts positive. If this is not the case the complete integration must, of course, be carried out.
Eq (6.142) may be again used to obtain the phase shift as:

£=Lfsinap(a)da

To

~2/P=1) 3/ pp— da sin a
= 2N Zg,, 5 < f e (6.144)

where again only positive phase shifts have been assumed.

The integrals in Eqs. (6.143) and (6.144) are amenable to evaluation in terms of gamma functions.
For foreign gas broadening in molecular spectra to which we are restricting ourselves here, an interaction
of the form B/r? yields a shift to width ratio of:

-3
6/A = % cot {2-%1;—————_—1) T} (6.145)

D.,f/(?rl)& f(,,)‘ o(Pe—3)/(Pe—~1)

* -
Foley wrote p(a) d a «GFD/ED (p — 1)

expression.

but it would be a bit difficult to obtain his result with this

t Foley gave sin'a instead of sin? —;— .
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Thus, Foley’s investigations into the phase shift solution of the Fourier integral have yielded line shapes
which have the admirable attribute of possessing a shift, although no asymmetry would appear to be present.
These results have, of course, been obtained classically after the quantum adiabatic hypothesis was utilized
to obtain the Fourier integral. We might now sketch Foley’s investigation of the error involved in the
adiabatic hypothesis.* In order to do this, we shall find an expression for the probability of non-adiabatic
transitions.

6.16. THE ALLOWABILITY OF THE ADIABATIC APPROXIMATION

To begin with, we expand the eigenfunction for the system in terms of the instantaneous solutions to:

H()ya(t) = E,(0¢,() (6.146)
t
as: T{t) = T a,(t) exp [— ;(!— / E,(t) dt] RG] (6.147)
0

Eq. (6.146) is, of course, the solution to:

H@mo=m%w@ (6.148)

) .
If we let, for convenience, 4 = — i [ E,(t)dt, the substitution of Eq. (6.146) into (6.147) yields:
0

thX &n(t) exp (A) d/n(t) + i}{z:an(t) exp (A) a‘wa"T(t) +2z an(t) €xp (A) En(t) 'l’n(t)

= Z an(t) exp (4) HO)Yn(t) = Z a,(¢) exp (4) Eq ()¢ (t) (6.149)t

The Z a,(t) exp (4) E,(t) ¥, (t) terms will obviously cancel out of Eq. (6.148). Subsequently, the multi-

plication through on the left by ¥, and integration over all space leads to the rate of state growth equation:

0 (A f (B, - B (6.150)
" 0

The time dependent portion of the Hamiltonian is included** in the collision interaction. Thus, we may
temporarily treat Eq. (6.146) as a time independent perturbation problem in order to find the ¥, (¢). Foley
utilized the first order eigenfunction which for this problem we have not as yet obtained.

If, in Eq. (5.1) we let m = k there results:

WYn
at

- &IH|n)

6.151
(En - Ek) ( )

Gnk

* Since the treatment is slightly different from Spitzer’s (cf. supra, Chap. 5) we shall give it here.

t Now note that this will give us a different expression for the a» than Eq. (4.185a) (Spitzer’s or Guttinger’s equation).
This is because Spitzer absorbed the exponential into the ¢¢(t) in Eq. (4.184b).

** Cf. supra, Eq. (6.150),



178

for the coefficients of the first-order perturbed eigenfunction in the expansion in terms of the unperturbed
eigenfunctions. Thus, we obtain for the present case:

H i
bty = o 4+ 2, 2L TG LD g

= Yu' + va'(®) (6.152)
where: Ul = u e B
Now for Eq. (6.147) let us write:
¥(t) = Za,(OYa(t) = Zan(O¥s’ + Zan(O¥a' () (6.153)

and substitute this equation into Eq. (6.148) to obtain:

" 0 - 5 9 ")) =
(H + H'(t) — - 3:) Za,(t) ¥ut) = (H + H' — ik 5) (fan(t)%" + Zay(t)¢n ®) =0
or:

(H +H i _:Z) > a0 =0 (6.154a)

n

+ " — W — ¢/ '=10 6.1541)
(H H W at ) an ¥n ( )

n

Eq. (6.154a) tells us that:
KD an(®) Va0 = 2, a0 O HO Y

and multiplication through on the left by ¢ and integration over all space yields:

i

) = — 72": (k| H'@) | n) exp [7‘{- (E, — ,,)] a,(0) (6.155a)

We suppose the system to be originally in the state m — before the collision — so that a,(0) = 1;
all other a,(0) = 0. Eq. (6.155a) becomes:

i (0) = — %(k | () | m) exp liapnt]
- L‘i_km_ (| H'(6) | m) exp liwpmt] (6.155b)

where wpm = (Ek‘ - m)/}(

In a general problem of this nature we would suppose the a, to change sufficiently slowly so that in
obtaining a specific a, we would integrate Eq. (6.155) from time zero to time ¢. In this case, however, we
imagine the collision perturbation to only proceed during the time 0 to ¢ with the consequence that the
extension of the integration to include all times previous and subsequent to this time interval has no effect
on the result. These machinations produce:

+o
o= i [ m) exp ] & (6156)

k — Lm
-
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H'(t) is generally the dipole-dipole interaction as in, say, Eq. (5.1), but we should note that its matrix

element will not disappear here, since we are not taking it over one state as was done in this earlier case.
Thus:

GO |m = HEE, (6157)

Now if we let K = p %" we may rewrite Eq. (6.156) as:
r
(k|8]|m) ,
=217 H(GK 6.158;
HEy~ B (1589

where H,(iK) is the first order Hankel function.

Eq. (6.158) will give us an idea as to how important the non-adiabatic transitions are. Specifically,
we can consider the numerator of this equation as a facile guide to this importance. The level energy
difference appearing in this numerator would indicate that the non-adiabatic transitions will be of negligible
importance for optical spectra where the level separations are large, but in the infrared region this is not the
case. In the event of the occurrence of such a transition, the radiation of the line under consideration will
cease. Thus, Foley suggested the introduction into the phase shift distribution p(a) of a probability for
these arbitrary phase shifts equivalent to the total probability for the non-adiabatic transitions. This has
not been carried out specifically.

Eq. (6.143) indicates that, in order to accurately calculate the line width, we need a detailed knowledge
of the interactions between emitter and absorber in the upper and lower states so that ¥ may be properly
evaluated. The shift to width ratio of Eq. (6.155) should be independent of v — dependent only on the
power of the interaction law — and should thus provide either (a) a test of the interaction law or (b) a test
of the theory. Here, of course, the oft encountered indeterminism of a check of theory against experiment
arises, since, in the case of non-agreement between the two, one may legitimately ask the questions: Is (a)
wrong? or Is (b) wrong? or Are they both wrong? At any rate, Foley obtained 0.363 for 8/A for the case
p = 6 and compared this result with the experimental results of several authors for foreign gas broadening.
The compared ratios are given in Table (6.2).

The wide divergence of the experimental results both from each other and from Foley’s theoretical
predictions is apparent, but the average, as Foley noted, of the values in Table (6.2), 0.375, agrees well with
the value given by Eq. (6.145). Practically speaking, however, this does not of necessity mean much, since
the statistical sampling obtainable from the table is not great enough for one to be able to say that, on the
average, the shift will be 0.375 any more than 0.175 or 0.575.
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6.17. THE DENSITY MATRIX

Beiore considering the Karplus-Schwinger® derivation of Eq. (6.107), let us again consider the repre-
sentative point in phase space which we mentioned preceding Eq. (6.32). We specify the density in phase

/

Spectral Line Perturber Ratio Reference
Hg 2537 A 0.39 45
N, 0.45 45
0 0.47 45
Na 5890 A 0.35 121
N, 0.44
K 17665 N, 0.47 121a
0.37 73a
7699 N, 0.50 121a
0.44 73a
4044 N, 0.50 121a
4047 N, 0.57 121a
Hg 2537 CO, 0.25 45
H0 0.22 45
H, 0.16 45
Na 5890 H, 0.23 121
K 7665 A 0.36 73a
7699 A 0.42 73a
Rb 4216 He 0.33
4202 He 0.23
4216 Ne 0.17
4202 Ne 0.22 136a
4216 A 0.56
4202 A 0.39
Cs 4555 He 0.30
Ne 0.23
A 0.42 42
N, 0.62
3876 He 0.62
Ne 0.37
A 0.77
N, 0.32

Table 6.2. After Foley."”

space by T, and we suppose this density to be a measure of the probability that the representative point is
in the volume element corresponding to a certain configuration and momentum state per unit phase volume.

Since the representative point is of necessity somewhere in phase space:

f...deql...dan'dpl...dpaN'

and the mean value of a quantity F is defined as:

<F>=f...[F1dg...dpy

(6.159a)

(6.159b)

in accordance with the definition of a mean value under the aegis of any other distribution function.
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For convenience, let us now take a collection of N such representative points in the phase space, repre-
senting a system of systems. Here T will be the actual system density, and we could replace one by N in
Eq. (6.159a). Corresponding to this density in phase space, we may obtain ard utilize a “*density matrix”

as the quantum mechanical analog.
From expansions of the form, say, Eq. (6.153), we may define the components of this density matrix as:

Lom = 737 2 8;,(t) apt) = <Tna,> (6.160)

Now, as usual, the average value of some observable F over one of the systems is:
<F> = [WFVdr = 2 [ GpymF anindr
mn .

% Fpy Gy ap (6.161a)
mn

so that the average value of F over all systems is:

<F> = 2 Fpp <6380> = Z Fpp Tom (6.161b)

which, according to the rules of matrix multiplication is:
<F> =2 (YF)u, = Tr||T F| (6.162)
In Eq. (6.162) “Tr” is the trace or diagonal sum of the product matrix || TF ||. Thus, the density

matrix provides an averaging medium which we shall utilize subsequently.
We may obtain another useful relation by recalling the state growth equation which we have noted on

several occasions:

_;’—= /’/: ok Ok (6.163)

From Eq. (6.163) we may infer that:

2 o = (> (e

= }.} (Hap<aGntr> — Hpp<dra,>)
- - }‘ (HiTim = TuiHim) = = L{(HT)sm = (TH)n]
or in matrix form:
urg;uru = HINTN-NTHIH (6.164)

'We now revert to the quantum mechanical derivation of Eq. (6.107).



182

6.18. ANOTHER QUANTUM JUSTIFICATION OF THE LORENTZ EQUATION
To begin with, the absorption coefficient for the absorption by a gas may be represented as:

a= 4«-‘§N (3] (6.165a)

where w is the frequency of the absorbed radiation and x is either the electric or magnetic susceptibility.
We may recall that the induced dipole moment is related to the susceptibility by

B(E) = B [x Fe ™ (6.165b)
where we now suppose our electric field to be:

F(t) = Fcoswt = R [F e (6.165¢)
Now our general procedure here will be to (a) find the average value &(t) using Eq. (6.162), (b) ascertain
x from Eq. (6.165b) by a utilization of the results of (a), and (c) find a by an insertion of the results of

(b) in Eq. (6.165), an apparently straightforward sequence of operations.
We must begin by gaining some knowledge of T, and the physical conditions of the problem will furnish
us this information. To begin with, we recall the Van Vleck-Weisskopf distribution of 4(t) — through the

amplitude distribution — as an application of the Maxwell-Boltzmann energy distribution. This leads us
to our averaging density matrix at time & = ¢ — ¢ where & is the time of collision:

” To(to) ” _ ev/kT”e—-H(lo)/bT“ = ”‘e—H(to)/kT“ (6.166a)
and the normalizing condition:
Trijr| =1
tells us that:
1/C = e~"*T = Tr|| e BT (6.166b)
In addition, Eq. (6.98) in a more general form yields:

IHO N = | Hy |l = | &1 FO) = [| By |l + || ¥ | cos wt (6.167)
where now H, is the Hamiltonian of the isolated molecule and the dipole moment operator is given by
I

We are now in a position to utilize Eq. (6.162) for finding the average value of || #(¢) || as:
<p)> =Tr|l s <r@®> || (6.168)

The density matrix is to be averaged over the random distributionl e~ %" d9 of timesty = £ — ¢
T

since the last collision, an obviously necessary procedure. Insofar as || T || is concerned, it certainly may

be presumed dependent on the time of the last collision ¢, such that || T || = || T(s )| In addition
[| T(¢,2,)|| must satisfy Eq. (6.164) and Eq. (6.166) through:
| TG, %) | = 1} Toleo) || (6.169)
Firstly then
[
1 <t@> 1= L [ lime = )l e a0 6170)
0
and since:

0 _ 2 n = )l 4 2 2
[Zurean] =2ire-oi+ 2 imw-al
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we may obtain from Eq. (6.170):

(]
e—o

0

0

~d/r
E _d
T

= i.[llH()lllT A e 3 H e
- J?of H@) || | T@e — 0) || — || Tz — 0) || ] (t)ll‘]——?—\

[
s

— [ Pt — 9) ||

- 1 — g —Y/T
L[t -oie a

(1] 0

e
T

= = 2L HO ILI<TO>1] = <T@ >[I HO 1 = -U1<70>1| ~ 1| 16) I

(6.171)
by Eq. (6.164) and an integration by parts.
Next the transformation:
D@ Il = || <T@®)> [| = || To(®) I (6.172)

may be introduced into Eq. (6.171). || D(¢) || is essentially a measure of the variation of the density matrix
|| T(2) || from a density matrix descriking & condition of instantaneous thermal equilibrium.
Under this transformation Eq. (6.171) becomes:

9 i 1 9
5 12@ 1l = ~¥ [T H@ 11D || = (1D L HE I = = 1| D@ || — 2 T@ I (6.173)

Let us write out a typical matrix element of -‘% || D() || from Eq. (6.173):

i} i i 2
5 D = = 3% [Hos Din = D Hia] = —Doa = - (To(®) o (6.174a)
We may surely assume that || Ho || has been diagonalized so that Eq. (6.174a) becomes:

5 \
» Dpp = — j—f [Hms® Dim 8 — Doic Hyn® 85 + (Vonk Din — Do Vi) co8 wi]

1 3
- ‘; D’ll - 'a;(To (’))mn

i
-'_"‘Hmmo_IInn'Dua*"'

(En® — Ey) Dpn — -i-,;a [Vt Din = D Vil = %D.., - ai‘ (T)mn  (6.174b)

@
W |-
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From Eq. (6.174b) we may obtain simply by rearrangement:

0 1 0 i
- iWmn — Umn = — — (T m — 2 Vm Din — " n) . ‘
a»+ ioms + - ® Py (To(2)) x (Vok Din — Dmp Vin) cos wt (6.175)

This is the apropos point in the development for the introduction of necessary restriction to a weak
incident radiation field. This approximation allows us to drop the summation on the right of Eq. (6.175)
due to the resultant smallness of the V,,. In addition, this assumption means that the density matrix

|} To(t) || should not be very different from the density matrix for an isolated molecule at temperature T.
Now this latter density matrix is given by:

19| = € || e~™AT |5 1/CO = Tr|| e~ 24| (6.176a)

and, since we have presupposed || H, || diagonal:
e~ Em/AT

1on©@ = 1,@ 8, 3 p@ =
mn m mn s Fm Tr”e_gﬂ/kr ”

(6.176b)

Karplus and Schwinger demonstrated the manner in which an operator of the form || e#*2|| =
[le@/AT || could be expanded in a series. The weakness of the field and the consequent smallness of the
Vs was then their basis for cutting off this expansion after the second term with the result:

e~ En/kT _ ~Bn/AT

(e HORT) = e EmiAT 5 = & Vinn CO8 wt (6.177a)
m — Lm

1/C = Tr|j e FO4T || 4 Ty || e H*T || 4 ,:111 Tr|| e /4T . F || cos wt (6.177h)

Finally, the utilization of Eqgs. (6.176) and (6.177) in Eq. (6.166a) yields:

Po®)mn = Tn® S + (Tn®@ — 1, J%"ﬂ co8 wt (6.178)

mn

The substitution of Eq. (6.178) into Eq. (6.175), recalling that the sum has been dropped in this latter
equation, now results in:

a . 1 Vnn
('5? + iwpma + T)Dmn(‘) = “’(Tm«» - Tn(O)) Jﬁo—_ cos wt (6.179)

mn

An integrating factor may be utilized after the normal fashion to obtain the steady state solution to
this first order equation as:

Dpa(t) = - % (T”(O) - Tm(o)) Ven i
W — wmy + ¥/7 .
+ —_— (T“(o) — Tm(o)) an e“ ( 6.180)

@ — Wpy — ¥/T 2Wlsmn
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To Eq. (6.180) we add || To(t) || as indicated by Eq. (6.172) to obtain:

Vv .
<Tpa() > = Tm(o) dmn (_______w__‘____ -1 ) Tn(O) — 1 O mn_ it
-o (oot 1) 0 - o) e
+ <___°i___. _ 1) ™0 — 1,) Von G (6.181)
W = Wmp — i/'r " %’mn

The simple substitution of Eq. (6.181) into Eq. (6.168) yields:

T o _. T 0)
u(e) = B Bop - F e (1 - ) In T im
mz,” nm Zmn 2}{wmn

@ — Wypt 1/7'

. ) _. 0
+ Z Fon Bom - F e (1 - ° ) T Tm (6.182)
man

W — pn — LJT s pn

Now, due to the spherical symmetry of the isolated molecule, £y lns - F may be replaced by
38um  bmnF = 3| fnm ' F. When the substitution has been made in Eq. (6.182) we may use the result-
ing equation and Eq. (6.165b) to obtain:

PO _p ®
_ 1 #mnz 1_ w ) n m
;3[" l( W — Wmn + i/7T hwmn *
PO _p ©
oS k(- © w ) n m 6.183a
p— Gl-' I ( w—wmn+i/r + w+wmn+i/f J{wm” ( )
from which:
ey e [ 1/ 1z ]T«»..T ®)  (6.183b
3 Iy §6h1 bl | T T e T ey el T ) (6183D)

Eqgs. (6.183b) and (6.165a) then may be combined to give:

Yy i ] b b A
X z l mﬂl ((0 _wmn)2+l/12 + (w+wmn)2+1/1'2 ){(A’mn/kT ( * )

This equation is generally the same as Eq. (6.107).
The Lorentz absorption coefficient equation has thus been afforded still another quantum justification*
subject, of course, to the approximations introduced.

¢ Jablonski has not commented.



Fig. (6,1). A model of the physical conceptions in-
herent in the Weisskopf Interruption Theory.
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CHAPTER 7
RESONANCE BROADENING

We have considered the broadening of spectral lines resulting from the presence of other molecules
in the neighborhood of the emitter only for those cases which arise when the broadening molecules are
molecules of a different type than the emitter. As we have seen, this broadening by foreign gases arises
from an interaction of, say, the Stark or van der Waals type between the emitter and broadener which
results in the distortion of the energy levels of the former with the consequent spreading and shifting of the
spectral line. We now devote our attention to the case of resonance or self broadening in which the width
of the spectral line arises from the presence of molecules of the same type as the emitter. As was early
recognized, this type of broadening is much stronger than that caused by foreign molecules. The reason
for this greater broadening can be qualitatively understood either by considering the situation from a
classical or quantum viewpoint.

7.1. THE QUALITATIVE BASIS OF SELF BROADENING

We have noted repeatedly that, excepting Doppler and natural line width, broadening is caused by an
interaction between the emitting molecule and a neighbor. In the classical sense, the similar molecules of
a radiating gas are made up of a collection of like oscillators of the same natural frequency. Due to the
sameness of this natural frequency, a strong coupling of these oscillators may be expected to occur in the
usual classical manner given some basic, say electrostatic, coupling force. This in turn will cause a spread
of the coupled oscillator frequencies about the natural frequency of a single oscillator.

From a quantum mechanical sense, the same strong broadening can be inferred. Let us hypothesize
a two molecule system in which the level degeneracy resulting from the sameness of the molecules results
in an energy perturbation dependent on the inverse cube of the molecular separation. We recall that under
the same interaction force two unlike molecules result in an inverse sixth power dependence on the molecular
separation. Thus, obviously greater broadening will result from the presence of like molecules. We shall
later discuss the reduction in state lifetime for the case of resonance broadening which results in a broaden-

ing of the spectral line, but the state degeneracy which we have mentioned above we shall allow to suffice
as an introductory consideration.

7.2. THE HOLTSMARK THEORY OF COUPLED OSCILLATORS

The first attack on the problem of resonance broadening was made by Holtsmark® in 1925.* This
author considered the problem from a classical point of view which depicted the molecules of the absorbing,
self-broadening gas as classical oscillators.

Now we suppose a coupling force, dependent on the electric dipole moment of the molecules, to be
present. Let us begin by considering two of these classical oscillators each consisting primarily of a “quasi-
elastically bound” electron. If x, is the vibrational coordinate} of the first oscillator and x, that of the

* At about the same time Mensing!® attacked the problem on much the same general basis, utilizing the “old” quantum

theory. Since little is to be gained by carrying th.vugh the problem using the “old’* and then again using the “new™ quantum

theory, we shall begin our quantum theoretical considerations of the problem with the work of Frenkel‘® in 1930.
tCt. supra, Sec, 2.2.
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second, then the Lagrangian for the problem is surely:
L=T-V=Q@mi’+ imi?) — Gka? + dhxl? + ks x,%) (1.1)

where, as usual, k, = mw® and k; = mw;?, w, and w, being the natural frequencies of the two oscillators
which have now been coupled through k,. We have assumed a quadratic potential energy expression, thus
inferring harmonic oscillation. If we now apply Lagrange’s equations we obtain:

'nil + mwlz X + ka Xy = 0 (7-2&)
m»'iaz + m(ﬁ)zz X + k; x = 0 (7.2}))

Utilizing the standard assumptions x, = ¢, €' and x, = ¢, & we obtain Lagrange’s secular deter-
g P 1 1 grang

minant:
k
w? — w? -3
m
={
_k 2 _ .2
[5) wy” |
m

which yields for the two frequencies of the now coupled oscillators:
1 E\2
w? = 3:‘(“’12 + w? = \/(wxz —wf) + 4 (;:-) ) (1.3)

. k .
If the two atoms are unlike then |w,? — w.?| >>-"% and we obtain:

k2
W -t = — 74
o m*(w? — wy?) @4
whereas, in the case w, = w, = w, (like molecules), we obtain:
W — ol = & ks
m (1.5)

A consideration of Eqs. (7.4) and (7.5) serves to illustrate the much larger frequency shift accompany-
ing the coupling of like oscillators since k; is always small. This essentially forms the basis for Holtsmark’s
considerations. Let us first determine, with Holtsmark, k;, and then proceed with the problem.

We have assumed our coupling force to arise from the electric dipole moments of the oscillators, and
we now specify these moments by pi(t) = ex;.

Eq. (4.19) may be rewritten slightly if we let the unit vector in the direction of r be given by r, = L

el

1
E; = ; [ P; — 3y (ry Pi)] (4.19)
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which is the electric field at distance r (in the direction of r;) due to the electric dipole p;, Then the poten-
tial due to the interaction of a dipole p;, at distance r is:

V=E - p = %rp.-- P — 3(r0 - i )(xy - Do) (1.60)

If we utilize the coordinates of Fig. (5.4) here, we obtain Eq. (5.1) from this. Eq. (7.6a) may be
rewritten as:

2
V= % [rir cos ¥4 — 3r;ry, cos v; cos v (1.6b)

In Eq. (7.6b) r; and r;, are the axes of the dipoles of molecule one and molecule two respectively; v,
is the angle between the two dipoles, and v; and v are the angles between r and p; and p; respectively.
Holtsmark assumed the special case p; || p; so that he obtained:

e?

V= 5 [ — 3 cos? v x: % (7.6¢)

where v, is now the angle between either p; or p; and r.

Then the force on molecule ¢ due to the field produced by molecule k is, since F = — VV:
F = Walx) _ €wq x
Fit i’
so that:

k. = ezwlz

: r’
We may let: 2 = efwy,

* mrd (1.7

Now if we consider a system of IV, atoms instead of our original two atomic system we may obtain,
after the same fashion as we obtained Eq. (7.2), N, equations of the form:

ESi

7.8
i=l,2,...,N1 ( )

it wla;+ Zaga =0
In arriving at Eq. (7.8) we must, of course, assume that all the atoms of our system are identi-al and,
as a result, possess the same natural frequency.
From Eq. (7.8) we may obtain the secular determinant for the problem:

A a2 Gy3 .« .- A1y,

an A ayg ...ay,
G31 32 A ... asn, =0 (7.9)

ooooooooooooooo

ay;1 Gy2 ayng - - - A

where the abbreviation A = &* — w? has been utilized.
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To this point the development has been on quite firm ground, but Holtsmark’s continuation of the
problem has been seriously disputed by, among others, Weisskopf**, Lenz*, and Margenau and Watson.?%
The difficulty arises out of Holtsmark’s attempts on the rather appalling determinant of Eq. (7.9).

Eq. (7.9) will have IV; roots, the determinant resulting in an Vi-th order equation. The IV; roots A,
will be of the form:

2 g2 (7.10)

A, = w/

Thus, the absorbing atoms are now capable of absorbing the NN, frequencies w, instead of simply the
natural frequency wo 8o that we obtain an absorption line of a definite width.

The equation resulting from the determinant of Eq. (7.9) will have no AY*~! term. Now in an N;-th
order equation in which the coefficient of the IV;-th power term is unity the coefficient of the (N, — 1)-st
power term is equivalent to the sum of the roots of the equation. This fact leads us to the conclusion that

in this case:
M

ZA =0

T=]

In addition, the relations between the roots and coeflicients of a polynomial are such that the coefficient
of the (IN; — 2)-rd power term is given by:

N M N1 N
Az = —2 2 A,‘ Ak= - E = Ak Qg (7.11)
fm]l fm2 im] k=2
<k <k

The term on the extreme right of Eq. (7.11) is the coefficient of the (Vi — 2)nd power term resulting
from the expansion of the determinant.

A secular determinant arising from a vibrational problem of this nature is automatically symmetric
since a;; and a;; are each equal to one half of the constant for some individual coordinate cross product
term in the quadratic potential energy expression for the problem. Thus a; = az;.

Holtsmark now makes the assumption* that the summation over a;a;; in Eq. (7.11) may be replaced
by an integration. When one considers the large number of molecules involved and the large distribution
of a,; as given by Eq. (7.7) this would appear to be a reasonable assumption. Let us take the probability
that a;;, lies between a;; and a;; + dag in value as:

w(a;) dag

Then if a random spatial distribution of the molecules is assumed:
wag) dag, = Er; Pdr sin vy, dv, (1.12)

where v; and v are the angles between the axes of the i-th and k-th molecules and the line joining these
molecules, respectively. We thus may take v,; as the polar angle in our volume element. Since a; = ai;
we may replace a;a;; by a;? and, when we integrate a;; and Eq. (7.12) over all space we will obtain the

* Lenz%% comments that “It is true that Holtsmark misled by a comnplex determinant scheme finds . . .”"  What Holtsmark
finds is as yet of no great import, but the validity of this statement certainly is, If Holtsmark utilized assumptions whose

invalidity is glaringly apparent or if an error appears in the development, the statement is, of course, justified. The converse
follows. More important criticisins will be discussed later.
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— 2
mean value of a;;2. Now there are Qx_@?__& = % of the a;? terms in Eq. (7.11) so that the results

2
of this integration must be multiplied by —1!21— to obtain A..

Thus:
® 1w
2 2 — 2
A’ = _ J.Yi f w(aik) azl'k dalk = — ]_V_l_. ﬂ-// .(_1___.._0_0_8____.7‘9 sin ’Yik d‘Y:k drfk
2 V m? rit

% 0

8r ¢¢ NV

= - 222 21 7.1
15 m* pf (13

. N; . .
since V = —Nl . po is here taken as the closest distance of approach of two molecular centers.

Since — as we have deduced from the fact that the equation resulting from the determinant has no
AY! term — the sum of the A, is zero, it is true that:

N1 N N1

2 2 A,'Ak = - ‘} E A,—z

=1 k=2 ]
1<k

Thus, according to Eq. (7.11) we may now write for Eq. (7.13):

l6x &¢ NN,
A12 = o e — 1
z 15 m? p? (7.14)
According to Eq. (7.10) this becomes:
ZA? 16w ¢ N
T = < 1_2 —_ 2 2> = e 7.15
M (e o) 15 m? pd (7.15)

If welet w — woe = w,’ then
w? — w? = ww, + ww, = 2w,

since we have assumed (w, — wo) K wp. We now obtain from Eq. (7.15):

Jeors =BT 1 o1 1)
H o

At this point Holtsmark makes the assumption that the distribution of w,” and hence the resulting
intensity distribution in the spectral Jine is a Gaussian error curve. It is particularly with this assumption
that Weisskopf** and later Margenau and Watson*® find themselves in disagreement. In the development
to this point there is no more basis for the choice of a Gaussian error curve than there is for any other
reasonably conceivable curve. In addition, the experimental eviderrce does not provide much support for
the assumption. Be this as it may, however, when this assumption is made there results:

1 —'t 't ’
W dy = ————-e“ dw (7.17)
(@) Vor<w?>
and for the half-width:
' NS ;YN 1

po 2wy
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In essence, then, the theory yields a half-width which is directly proportional to *. .. the root of the
number of absorbing centers ...” ® and inversely proportional to a distance p, which is rather arbitrary
and may be likened to the optical collision diameter of the Lorentz-Lenz-Weisskopf-etc. theory. This half-
width is predicated on a line shape which could just as justifiably have been assumed at the beginning of
the formulation as at the end.

The theory is certainly important, however, in that it provided the entree into the field of resonance
broadening, and it can only be classified as unfortunate that the guardian inside the gate to this field was
Eq. (7.9).

A few years after the presentation of this theory by Holtsmark, Frenkel*® attacked the problem on the
basis of the quantum theory, although the physical considerations were essentially the same.

7.3. QUANTUM RESONANCE IN BINARY INTERACTIONS

Let us begin, with Frenkel, by considering a system of two molecules. The interaction energy when the
two molecules are unlike has already been given by Eq. (5.15). Now for the case of two like molecules, let
us again use Holtsmark’s potential kyx,x; for comparison. We find ourselves dealing with a case of quantum
mechanical degeneracy.

Let us assume that one member of our two particle system will proceed from a state of energy E,
to the ground state of energy E, with accompanying radiation. The two molecules of the system we desig-
nate as 1 and 2, and the eigenfunctions for the first molecule alone in the ground and first excited states as
¥o(1) and ¢ (1) respectively. Then, the unperturbed eigenfunction for the system in the ground state is:

Yy = y(1)¢(2) (1.19)

¥, is the eigenfunction going with the state having energy E;. On the other hand, if the system is
possessed of energy Ey, the eigenfunction may be:

v = yi(D¥e(2) or ¥a = % (¥a(2)

Since either of these two eigenfunctions satisfies the Schrodinger equation for energy E,, the eigenfunc-
tion for the state is a linear combination of the two possibilities:

¥; = cyn + o = ey (7.20)
F
In addition, the two states ¥y, and Y2 of equal energy indicate that a quantum degeneracy problem*

has arisen, and Eq. (4.147) yields two equations for the ¢;;. These equations have a solution, according
to Cramer’s rule, only if:

EY — HY — Hyp'
=0 (7.21)
— Hy' El(l) — Hy'
H;;, = Hp = 0 so that:t
EM = + Hy (1.22)

We substitute Eq. (7.22) into an equation of the form Eq. (4.147) to obtain:
cu = ke

* See supra, Sec. 4.17.
t Cf. supra, Eq. (5.1).
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so that Eq. (7.20) becomes:
¥y, = en¥u + cuym (7.23a)
¥, = cu¥u — cudm (7.23b)
To find ¢y we normalize Eq. (7.23a):

a2 f|ultdr + e f|¥ultdr + 200 [Yaudmdr = en? + c? + 0 = 1

due to the orthonormality of the original eigenfunctions. From this, it is apparent that ¢ = 1/ V2,

An inspection of Eq. (7.23a) shows it to be symmetric with respect to exchange of the two molecules
while Eq. (7.23b) is antisymmetric. In the case of electric dipole radiation in which the transition
proceeds from state one to the ground state the matrix element'is:

My = [ ",MVdr (7.24)

Vo has been given by Eq. (7.19) and is symmetrical with respect to an exchange of the two molecules,
as is also the electric dipole moment in this case. Since an integrand is nothing more nor less than a number

after integration, it must surely be symmetrical. On this basis we throw out Eq. (7.23b) and merely retain
(7.23a).

We have thus found our first excited state eigenfunction for the system. The first order energy is
given by:
Ex(l) = f -‘i’-l, H"I’l.df
= ks [ 2 (@) o()¢a(2)dridr
= + k:! ]xm‘z (7'25)

Eq. (7.25) tells us that the presence of one molecule shifts the spectral line by the amount:
’ k3
Vo= 4 = agl (7.26a)
m

Let us rewrite Eq. (7.5) slightly for comparison:

w— w = ks =k ks
(@ + wo)m 2womn
or vV = &+ _____k;; = =+ ¢ (———-———1 — cos’7) (7.26b)
87*my, r  8x®mw

The quantum mechanical equation (7.26a) apparently yields one shifted frequency, but we shall see

that when the different possible values of the magnetic quantum number are considered two frequencies
will result.

Under the assumption in k; that:
\

<(1—3cos?y)?> =1— <6cos?vy> + <9costy> =1 -—2+§=

AT
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Frenkel obtains for the root mean square value of »':

2 2
\/ <> = i : 'x;:l (1.27)
In addition, Frenkel utilizes the more exact expression Eq. (7.6a) instead of Eq. (7.6c) for V" to obtain:
_ 21 |pyp
\/ =N s -—“’,:"l (7.28)

As Margenau and Watson®*® have done, we may also use Eq. (5.1) for V. If we take hydrogen-like
wave functions and use precisely the method of calculation which we have utilized in obtaining Eq. (7.25)

we obtain for E;:

——; % |rel? form = 0
EY =k =
1e
+ - 33 [rml2 form = +1 (7.29a)

where, as usual, m is the magnetic quantum number, and where:

3h
2
il 8x’my, fa
go that:
e 2
- f =0
r 8x'my, fa for m
Vo=
'_1 81r2mv Sz for m= %1 (7.29b)

which compares at least reasonably well with Eq. (7.26b), although the symmetry is obviously lacking.

7.4, THE STATISTICAL RESONANCE RESULT
Eq. (7.29b) may be rewritten as:

EO=h' =y (8_‘:2;2’?.‘“_)} (1.30")
myy

where v is the statistical weight factor associated with m. After the fashion of Margenau and Watson,2%°
let us equate v to unity. We consider this an averaging process over the possible molecular orientations.*

The result is:

V= EO — o™ = (z%%)ﬂ (1.31a’)
so that:
¢ = 8_1’%’,{% (1.31b")
0

* Cf. supra, Eqs. (5.14) and subsequent.
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From Eq. (5.126b) the half width of the resonance broadened spectral line is:

2V, 4
=40 _ 2 T N,
=TI
so that:
§ = .elf‘_’_ N (7.32)
6mVo

Eq. (7.32') was originally obtained by Margenau and Watson®® in a slightly different manner.

7.5. RESONANCE BROADENING BY MANY MOLECULES (FRENKEL)

Let us now turn our attention, with Frenkel, to a system of IN; like molecules. Again we are only
interested in the ground state for the system in which none of the /N; molecules is excited and the first
excited state for the system in which one of the IV, molecules is excited. Our first excited state eigenfunction
is givenby Eq. (7.20), and the c;, are given by N, equations of the form Eq. (4.147). In Eq. (4.147)— again
utilizing Eq. (7.6¢c) for ¥ — the H'}; are given by:

Hlj’ = % 2; kz'," f. . f Xy X 'h' lp," dﬂ ‘e dTN, (7.30!)
J
Vej!

where here H' = Z kjj x; x; .
lej

It would appear to be worthwhile from the point of view of clarity to illustrate this equation with an

example.
Let us suppose that we have a three molecular system, and let the eigenfunctions fo. the three molecules

in the ground state be given by ¥1(0), ¥2(0), and ¥,(0). In the first excited state we shall replace 0 by 1.
Then the first excited state for the system must be a linear combination of the following functions:
Y1 = (1) ¥2(0) ¥,(0)
¥a = ¥1(0) ¥a(1) ¥,(0) (7.31)
¥a = ¥1(0) ¥a(0) ¥4(1)

From Eq. (7.31) we may obtain Eq. (7.30a) for this case as, for example:

Hy' = [ (knxxs + k2% + Fas 2a%5) Y1 ¥a dry dry dry
= ks f X1 1’1(1) ¥1(0) dry f X3 'h(o) va(l) drs f ¥1(0) ¥1(0) dry
+ ku [ 2 91(1) 1(0) drs [ ¥a(0) ¥a(1) dra £ 25 ¥4(0) ¥a(0) dry
+ ks f $1(1) $1(0) dry [ 21 ¥2(0) ¥a(1) drs f %, ¥3(0) ¥(0) drs
= ks x| + 0 + 0 = Kya |xy)* (1.32)

In general, Eq. (7.30a) may be written:
Hu’ = klj"lb " (7.305)
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Now let us rewrite Eq. (7.8) under the assumption that x; = x; ¢’ — the assumption which leads to
the secular determinant.

1
(w2 - wo’) xXp = -’-n- Ekl,-x,-
or:

(V - vo)x; = -—1— zklj x; (7.33)
8xmy,

Eq. (7.33) is the classical analog of Eq. (4.147) in the same fashion as Eq. (7.26b) is the analog of Eq.
(7.26a).

y—}lt |xw0f? in Eq. (7.16) to obtain the

quantum mechanical equivalent of this equation:

Joris = aJZIN &l
<vE> = 15 o T h (1.34a)

Frenkel also uses Eq. (7.6a) instead of Eq. (7.6¢) to obtain:

Joms = 5V L

(7.34b)

Even if Eq. (7.34b) holds without question we still have no information about the half-width, since
the assumption of the Gauss error curve is not very well justified. Eq. (7.34b) does not hold without
question, however, as we may now show.

We have N, eigenfunctions of the form Eq. (7.20) for the first excited state of the system. We have
one eigenfunction for the ground state. The probability of a transition from a state going with one of these
N, eigenfunctions and the ground state is given by the square of the matrix element of the electric dipole
moment. Thus, in order to find the root mean square frequency shift, the proper weights must be given
to each of these shifts. The intensity distribution also would result from the calculation of these weighted
eigenvalues which, as in Eq. (7.29a), would each have three different values according as m = 0, = 1,
Frenkel did launch an attack on this problem, but with no notable success.

The question of resonance broadening is again confronted by the obstacle presented to progress by
Eq. (1.9).

Whether or not the methods used by Holtsmark and Frenkel to obtain their results are correct, the
results themselves as given by Eqs. (7.15) and (7.31) are open to serious question in that these equations
claim a dependence of the half-width on the root of the density. A consideration of these equations will
probably indicate to the reader, however, that po offers a bonnet out of which we might possibly produce
a different pressure dependence. This is admittedly a posteriori reasoning, since Schutz-Mensing!*® (nee
Mensing) has done just this.
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7.6. A LINEAR RELATION BETWEEN HALF-WIDTH AND DENSITY

From Eq. (7.11) and the fact that 2wxw,” = w® — wo® we may write:

o
33 b0t = (i) T byt (1.35a)
m 12k

—_ 2 a . )
where by, = L =3¢ V). po (7 354) may be rewritten as:

'y
2 (&)
A= = () Zba
Zo 4ot (m) e;ze;k k
Zv,'3 2 ez):—L

or:

<y> = = —
N 42x) vt \m

byt 7.35b)*
N g" 5 ( )

Now we recall that Holtsmark replaced the sum in Eq. (7.35b) by a weighted integration over b;;?
Schutz-Mensing considers only the i-th molecule initially and replaces the summation over k by an integra-
tion and multiplication by IV;, there now being (V; — 1) instead of N;(/V; — 1)/2 terms.

As in Eq. (7.13):
16 N

o
. N; 1 .
kE‘ G’,‘k = 2x 71/ /-'T" (1 — 3 cos?® ‘)‘,')2 8 ¢ d'y,- dl',' = —l? p—i’ (7.36)
p O

We may note that the lower limit has been designated by p;. p; is taken as the separation of the i-th
molecule and the closest adjoining molecule, and is hence a variable. Finally, Schutz-Mensing takes the
average p; to obtain the complete summation in Eq. (7.35b).

shae = 1o

15 <p>? (30t
p

In her earlier work, Schutz-Mensing had calculated a value 0.55N ~1/3 for <p>. Thus, Eq. (1.35b)

becomes:

2

<n> =1 1 (i> A (7.35¢)
15 4Q2x) % \m

Thus, it is apparent that, should we now use Eq. (7.18) for the half-width, we would obtain a linear
dependence on the density.

She also carried through a calculation in which an integration is carried out over the probability that
p lies between p and p + dp to obtain:

2by? = — ;)—; 2 N2V, [ —c- ]og(%— 'N):l (7.38)

3

* A minor point to vae effect that Schutz-Mensing left out the 2 in the numerator of this equation might be meationed.

t Schutz-Mensing does not obtain the factor 1/2, but since there are only a total of NV,2/2 terms arising out of the
summation over b, it would scem paradoxical to end by obtaining a total of N,. This appears true even though, when only
the latter portion of Eq. (7.36) is considered, there do remain (N, — 1) to occupy the space point a distance p; from the i-th
molecule. It should finally be noted that the two in the numerator of Eq. (7.35b) and the one-half in Eq. (7.37) do combine
to yield Eq. (7.18) with pg replaced by <p>.

. . . 4
where the bracketed term is the first term in the expansion of the exponential integral Ei ( - = N).
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After the Frenkel manner, Schutz-Mensing next considered the replacement of by the square

81r yvom
of the matrix element divided by & to obtain the “corresponding” quantum mechanical cases.
y po! g qu

The lack of success attendant on the method of attack utilized by Holtsmark® and Frenkel*® was per-
haps the reason that Weisskopf'® considered the problem from a different viewpoint. As has been men-
tioned previously, Weisskopf objected to Holtsmark’s use of a Gaussian error curve with the resulting
relation between the half-width and the mean square of the deviation <Aw?>. He pointed out that in the
case of an intensity distribution of the form r__ 1 the half-width is ¥ but <Aw?> is infinite. In

T (Aw)® + 7
addition, Weisskopf felt that Holtsmark should have included the natural width, although it should be
mentioned that above pressures of a few millimeters this would not be of too great import.

7.7. THE WEISSKOPF RESONANCE BROADENING THEORY

Let us first obtain the Lorentz-Lorenz relation. From Maxwell’s equations we obtain the following
relation between the electric displacement D, the electric field E, and the polarization I:

D =¢E =E+ 4xl (7.39a)

where ¢ is the dielectric constant for the medium. Now the force on a unit charge in a polarizable medium

may be shown to be:
F=FE-+ 4xI (7.39b)

If the polarizability of a molecule is «, then the induced electric dipole moment of the molecule is:
p = aF (7.39¢)

From Eq. (7.39¢) the polarization or the electric moment per unit of volume is:

I=Np=NaF=Na<E+%I) (1.40)

where [V is the number of molecules per unit of volume. If we eliminate I between Egs. (7.39a) and (7.40)

we obtain the Lorentz-Lorenz relation:

e+ 2 3

=1 _4n (7.41a)

or, if we recall that the dielectric constant for a medium is the square of the refractive index:

nt=1_4 ~e (7.41b)
n24+2 3

where n, = n(l + ix).

Weisskopf asserted that the “. . . width is given completely by the course of the absorption coefficient
n...”"in Eq. (7.41b), and he hased this assertion on the manner of the development of this equation by
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Oseen,*® Ewald,* and Bothe.* These authors had treated the molecules of a gas as classical oscillators and

had obtained the equation in question after a computation in which the “reciprocal effect” of the oscillators

on one another had been included. Thus, Weisskopf felt that Eq. (7.41b) included the coupling effect.
Now let us make the usual approximation to the effect thatin our gasn, = landn? — 1 = 2(n, — 1)

so that Eq. (7.41b) becomes:
n,— 1 = 2xNa (7.41¢c)

Next, we must needs find Ve, and, since aF = Zexy, Na is given by:

Ne = %’ 2 exy (1.42)

We set up Newton’s equation for the amplitude x; under the assumption that the electron of mass m
possesses the natural frequency wo, is subject to a velocity proportional damping force, the constant of
proportionality being mv, and is acted upon by a force eE due to the presence of the electric field E. The

resulting equation is:
mx, = — myX;, — mwlx; + eE (7.43)

If we suppose the time dependent portion of x; to be the same as that of E, the .olution of Eq. (7.43)
for the time independent portion of the amplitude is:
w,=2__ B . e E
k maw — o 4+ fwy mwp wp — @+ iy
so that:

Ne* 1
=2 '—'.—fnm (7.44)
mwy wp — w4+ iy

Na
Here f,n is the so-called oscillator strength for the transition from level m to level n. In this case f,,,
will give the number of dispersion electrons belonging to the transition under consideration. From Egs.
(7.41c) and (7.44c) we obtain:
2xrNe?
n, = 1 4 2*Ne LI (7.45)

mwy w — w -+ 2v

nk is the imaginary part of Eq. (7.45) so that:

27 Ne*y 1
ng = — mn 7.4
) mw  (wo — w)? + 'yzf (7.46)

v may be considered as v, + 72 where v, and v; are the radiation and collision damping respectively.
We may neglect v; in the case of very low pressures to simply obtain the effects of the natural line width.
We again consider Eq. (7.41). This may be rewritten as:

nt—1= __i’_-_]_\rf__ (7_47)

(1- :rNa)
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where we have not assumed n = 1. If we substituted the value of Na from Eq. (7.44) into Eq. (7.47) and

2
let 4 = ¥ £, we obtain:
mwo

ncz - 1 = (704‘8)

If: B =4x4 ; @p = wo — —:—WA s Aw = 0 — w (7.49a)

Eq. (7.48) becomes:
(— Ba + iy + B)(Aw + iy)

n?=x+ iy = (Z’a_))z + 42 (1.50)*
If the transformation:
b=1—3~ ;A= = (7.49b)
4 Y
is utilized in Eq. (7.50) the result is:
_ .o (A b+ )+ ‘
n?=x-+iy = PO (7.51)
The imaginary part of the root of n?is n«, and this is desired. It may be recalled that:
\/,_;:2 _ e‘.("+22kt)
where: r= Va2 y?; ¢ = arc tan X
x
Thus, we may obtain from Eq. (7.51):
— — b)2 3
ng = g, ‘Jnc2 — 4 (__A__..___b_)__-f_l Bin { 1 arctan (,“i_____._) > (7.52)1'
A+ 1 2 (A -ba+1/)

for the absorption coefficient.

For the case A >> b, that is, in the wings of the spectral line, Eq. (7.52) reduces to Eq. (7.46).

It might be mentioned at this point that our half-width as given by v, 4+ v; will be directly proportional
to the pressure — above those pressures at which v; noticeably affects the sum — through v;. In this theory,
which is directly connected to Weisskopf’s foreign gas broadening theory,** the optical collision diameter
must be taken a good bit larger than in the case of foreign gas broadening. As an example Weisskopf
estimated a value of 444 for the optical collision diameter in the case of the Na-D, line.

Weisskopf himself was not very happy aboit the results of his considerations for in the final analysis
he was forced to ignore the coupling of the atoms “. .. since for the present no way to treat (this) is
mﬂe (Aw + iy + B) instead of (— Aw + iy + B) in his first paper!® but corrected it in his second.®%

1 Weisskopf obtained (A 4 b)* + 1 under the root instead of (A — b)* 4+ 1 in his first paper.19
** See supra, Chap. 7.
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apparent . . .” % As we have mentioned Weisskopf’s main conclusion is his assumption that ... the
collisions cause an enlargement in the damping of the individual oscillators . . .,”'* an enlargement of greater
magnitude than in the case of foreign gas broadening.*

We may write out our half width for purposes of consideration if we let the mean free path as given
by Eq. (1.13) be L:

s=r= 2 =22 prp N (1.59)
T
where <v> is taken by Weisskopf as the mean relative velocity. We have here the optical collision diam-

eter as an essentially unknown and conveniently adjustable parameter. We may calculate a value for it,

however, if we again assumef that a phase change of unity defines an optical collision. Eq. (6.7) may be
written for this case as:

+o
_— K Kde
A = AV v + p?) = = 6 = / @E+ ~1 (7.542)

Now if we let dx = vdt/p we obtain from Eq. (7.53):

+00 +o

K /____Pd_x__ _K [ __d _ 1
vt + 1D)¥2  pprJ (a2 + 1)32

or: . p= J _IE (7.54b)**
v
+o0
dx 1/2 -
where: J = (/ m) = 42 (7.55)
A consideration of Eq. (7.31a’), for example, serves to evaluate K.
Aw = (-——egf"'")r—3
4rmy,
e? K
= = — 7.56
2muwer? / r ( )

* Weisskopf also included Doppler broadening in gne stage of the development. To do this one simply replaces w in
Eq. (7.44) by w + T — T is the frequency displacement due to the Doppler effect —, multiplies by the probability of the dis-

1
placement, namely, the Maxwell-Boltzmann probability T—T_— exp (— T*/T¢?)d to obtain, in place of Eq. (7.4):
LAk

+o

A exp [— T3/, dT
ToVNx 0 (0 —w —T) iy

t Cf. supra, Sec. 6.2.

—

** In frequency units » : p = J drx (1.54b")
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where we have averaged over the angle function and multiplied by the oscillator strength of the transition
giving rise to the line under consideration. Utilization of Eqs. (7.54) and (7.55) in Eq. (7.53) yields:

=252 fu N (1.57)
muwo

In a short paper on the subject Weisskopf'®?, plotted Eq. (7.52) for the case b = 4 and the collision

width much greater than the natural width. Weisskopf’s figure is reproduced in Fig. (7.1), and a considera-
tion of the figure serves to illustrate the shift and symmetry provided by the theory.

7.8. REVIEW OF SELF-BROADENING TO THIS POINT

Thus far then we have considered two theories as to the origin of the resonance interactions resulting
in self broadening and four theories propounded for the purpose of explaining this self broadening as such.
The first of these interaction theories as advanced by Holtsmark considered the self breadening gas as a
collection of coupled oscillators whose coupling resulted in a splitting of the frequency about the unperturbed
line position. Unfortunately, the calculational difficulties involved in this theory led to results which were
questionable. In particular we refer to Eq. (7.9). Without too much justification Holtsmark used his
interaction results within the assumption of a Gaussian line shape to obtain Eq. (7.18) for the line half width.

The quantum mechanical analog of this coupled-oscillator-interaction theory provided the other
resonance interaction. This quantum mechanical analog was essentially predicated on the degeneracy
resulting from the presence of V) identical particles any one of which may be excited. It too faced extreme
difficulties of computation. As a consequence, although the basic theory appears sound, the possibility
of obtaining results from this theory would seem remote. At any rate, on an appeal to correspondences
Frenkel obtained, in analogy to Eq. (7.18), Eqs. (7.34) for the line half width.

Interaction results are obtainable for the case of two molecules, however, as for example, Eqgs. (7.29).
Margenau and Watson used this binary interaction within the framework of the Statistical Theory to
obtain Eq. (7.32) for the half width, This result should be a reasonable one for those situations in which
the Statistical Theory may be expeeted to hold and for pressure sufficiently low that we need not consider
the simultaneous interaction of more than two molecules.

The fourth broadening theory which was advanced was nothing more nor less than the application of
the Michelson-Lorentz theory of Interruption broadening to the case of self broadening. Here a parameter
— the optical collision diameter — is conveniently present which, if it is taken a good bit larger than in
the case of foreign gas broadening, does yield results. If we wish to calculate this parameter under the
assumptions utilized in obtaining Eq. (7.57) we could still adjust the final result by adjusting the phase
change which defines a collision. Weisskopf mentions the fact that in some cases the theory only yields
a p which is of the order of magnitude of the correct result and in other cases not even this accuracy is
attained. These other cases can, of course, be explained as “due to other causes.”

79. QUALITATIVE CONSIDERATION OF THE ENERGY TRANSFER THEORY

Some four years after the publication of Weisskopf’s theory Furssow and Wlassow'? entered the field
with what did amount to a new approach. Their entry was marked by the intriguing statement that the
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Weisskopf theory — and the Lenz theory in passing — was completely incorrect.* Although one obvious
reason for their statement may have been to pave the way for the introduction of their theory, it would
appear reasonable for us to briefly consider the reasons which they advanced for this conclusion.

For greatest accuracy of consideration let us quote the Furssow and Wlassow statement verbatim before
attempting to consider their reasoning.

“To be sure Weisskopf's considerations of the collisions between the like atoms is not entirely correct.
Weisskopf without foundation applies the correct concept of the mechanism of the collision damping in the
case of non-extinguishing atoms of different types to the case of like atoms, As is known the broadening
of the lines through collisions result not only when the wave train emitted by the atom is propagated after
the collision (extinguishing gases) but also at the time when at the collision a change of the vibration phase
of the excited atom sets in (non-extinguishing gases). In order to compute the phase shift during the
collision one must take the change of the frequency Awt of the emitting atom which occurs through the
interaction with foreign atoms and integrate over the collision time.t If one makes this integral equal
to one then the magnitude of the optical collision diameter can be evaluated. The collisions of the like
atoms Weisshopf takes instead of Aw arbitrarily the difference between the frequency of one of the normal
vibrations of a system of two dipole linked like linear oscillators and the frequency of the isolated atom.
It is clear that this computation is based on a misunderstanding. Aw is in terms of its nature the change
of the frequency of the emitting atom, the light of which is analyzed according to Fourier. That however
which Weisskopf substitutes instead of it has nothing at all to do with the matter because of the degeneracy
.. . the concept that in the collision of two like atoms one of which is excited and the other of which is
unexcited the vibration phase of the excited atom is changed does not at all correspond to reality.”*

It might be remarked first that the Aw which they believe to have been improperly chosen seems to be
the very one whose choice they advocate for the following reason * . . . take the change of the frequency Aw
.. . and integrate over the collision time.”"” Now it is true that integration is not extended over these
limits in Eq. (7.54a), but let us recall that this latter equation is an approximation which has its roots in
the more nearly correct Eq. (6.6). Further, the remarks which they make about coupled oscillators seems
less applicable to Weisskopf than to almost any other resonance author. If they base their argument on
the ““degeneracy” — they do not define this degeneracy but we can assume that it is that degeneracy aris-
ing from the indistinguishability of the atoms of our ensemble — then the question of which approach is
more nearly correct has to be answered, and no one seems to have done this to date, at least not to the
satisfaction of more than a few. Surely though the adjustable-parameter-dependent Weisskopf theory has
not been so devastated by the above quoted argument that it cannot be considered as remaining a reasonable
approximation.

The Furssow and Wlassow theory** really has its basis in a conception advanced by Kallmann and
London® in 1929 to the effect that like atoms may simply exchange energy between each other without
accompanying radiation. Even a cursory consideration of this conception gives an inkling of an applica-
tion to the theory of self-broadening. We may examine it from either a quantum or a classical viewpoint.

First the classical viewpoint. To begin with we consider our molecules as classical oscillators, and
again we have the dipole interaction between two like oscillators, one of which is excited and the other of

* Houston took mild exception to this statement to the effect that “ . . . the criticism of Weisskopf’s work contained in
this paper does not appear to be justified . . .”™ but did not reply to the Furssow and Wlassow criticism specifically.
t Underlining added.

** Although the physical theory here is different, we shall see that it leads to precisely the mathematical results of Secs.
7.3 and 7.5.
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which is unexcited. As a result of this interaction the amplitude of oscillation of the excited molecule
decreases while that of the unexcited molecule increases, that is, an energy transler occurs. This is effec-
tively the same as damping the oscillations of the excited molecule, and, as in the case of the Lorentz
damping* will result in a broadening of the spectral line. Let us now consider qualitatively the quantum
mechanical explanation of this effect.

Energy is assumed to be transferred as a result again of the dipole interaction from an excited to an
unexcited molecule of the same kind. Whatever the lifetime of the excited state would be under conditions
of no transfer this lifetime will be greatly shortened by a high probability of transfer before radiation. Now
we may recall that one form of the Heisenberg uncertainty principle states that AEAt > h. Thus, if, as is
the case in the ground state, the state lifetime is infinite, the ground state will be infinitely well defined
or virtually infinitely narrow. As soon as we consider a state with a finite lifetime, however, the situation
changes. A certain lifetime At will give us a certain indefiniteness AE in the state energy, or a certain level
width. This level width in turn will mean that a spectral line arising from the combination of this level
with another will be broadened as a consequence. Thus, when we increase our state lifetime by this energy
transfer, quantum mechanics decrees that we indirectly broaden our spectral line by widening the energy
level.

These then are the classical and quantum forms of the theory as advanced by Furssow and Wlassow.
It now remains only to rewrite our qualitative conjectures after a quantitative fashion. Let us consider
the classical approach first.

7.10. THE CLASSICAL ENERGY TRANSFER (LOW PRESSURE)

To begin with it is of course necessary to make a few simple assumptions regarding our system. In
this consideration we are assuming our molecule to be a classical harmonic oscillator. Now we shall consider
that the electronic transition which gives rise to our broadened spectral line proceeds to the ground state.
We will assume that only one valence electron is responsible for the spectral line under consideration.
Finally let us suppose that the excited molecule, of which our system contains one for our purposes here,
moves in the neighborhood of the remainder of the unexcited molecules. The excited inolecule we then
consider as moving rectilinearly with velocity v. We might possibly bring up the same type of objection
to the utilization of a linear velocity here as was brought up by Jablonski in objection to Weisskopf's
utilization of a linear velocity in a central force problem. However this is probably minor at this stage.f

In considering our interaction which leads to the self broadening of the line, we shall assume this
interaction to take place between our emitter and one of the unexcited broadening molecules. It has
already been assumed that the broadening molecules are stationary so we shall place our broadener at the
origin of the inertial reference frame. The coordinates of the valence electron of this unexcited molecule
let us designate as x1y1z;. We next establish a moving reference frame at the excited molecule. The coordi-
nates of the valence electron are taken to be xyy;% which coordinates are, of course, referred to the moving
frame, Finally, let us designate by R the separation of the two reference frames.

As has been mentioned earlier, it is here desired to use as the potential of the interaction the electric
dipole potential. Thus, we are essentially faced with the same task with which we were presented in deriv-
ing Eq. (5.1). We make the same assumptions, that is, we first assume that R is very large compared to the

* Cf. supra, Chap. 1.
t Most authors appear to consider it minor at any stage, although this is not conclusive.
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size of the molecules and hence compared to separation of the electron from the nucleus. Now we assume
that the moving reference frame is so oriented with respect to the inertial frame that one axis moves parallel
to the corresponding axis in the inertial frame and the other corresponding axes remain parallel to each
other. Now let us further suppose that the angles made by the radius vector R with the coordinate axes
are a, 8, 7. Under these assumptions the Coulomb interaction may be expanded in terms of a, 8, v.* The
first term in this expansion will, as we have seen, be the electric dipole potential, which potential we shall
assume to be responsible for the interaction between the excited and unexcited molecules. The electric
dipole potential is given by:

2
V= %—'[xlx;(l — 3 cos?a) + y1y3(1 — 3 cos? B) + zi;a(l — 3 cos?y) — 3(x1y1 cos a cos B

+ 212 cos a co8 ¥ + ¥123 co8 B co8 a + Y122 cos B cos y
-+ zxs cos ¥ coB a + zya OB Y COB 8)] (1.58)

If our molecule was a one dimensional harmonic oscillator which was undergoing no interaction with
any other oscillators Newton’s equation of motion would be x + wx = 0, assuming of course that motion
is along the x-axis. Here o is the natural frequency of the mol:cular oscillator. Now, however, we must
modify this equation to include the interaction with the second oscillator and the effects of three dimensional
oscillation, The modification to include the electric dipole interaction may be taken directly from Eq.
(7.58) to yield the following system of equations:

# + wxy + A[(1 — 3cos?a)rs — 3 cosacos Byr — 3cosacos yzm =0
1+ oty + A[(1 — 3cos?B)ys — 3 cos Bcosyz — 3 cos §cos ax] = 0
£1+ wttn + A[(1 — 3 cos®y)zs — 3 cosy cos wxs — 3 cosy cos Bys] = 0 (1.59)
£ + wits + A1 — 3 cos? a)ry — 3 cosacos By — 3cosacosyzn =0
5’,+wozyg+A[(1 — 3cos?B)yr —3cosBcosyz — 3cosBcosax) =0
i3 + w2+ A[(1 — 3 cos? y)zy ~ 3 cos vy cosax; — 3 cosycos By =0

e 1

where: A==
m R

Furssow and Wlasson solved the system of equations given by Eq. (7.59) by using a method of suc-
cessive approximations. First, let us assume that the bracketed terms in this equational system are all zero.
The solution of the system of equations resulting from this approximation, we will consider our zeroth-order
solution. Initially, the unexcited molecule whose electronic coordinates are x,y:2; is undergoing no electronic
vibrations. For simplicity of consideration, we shall assume that the excited molecule is carrying out
vibrations along its z-axis. When these approximations are taken imto account the zeroth-order solution
to the problem is as follows:

10 = 3O = 20 = KO = y,® = 0 (7.60a)

7 = A cos wy (7.60b)

We may now substitute the values for x1,y1, . . . , 21 back into Eq. (7.59). The solution of the resulting
system of equations yields the first approximate solution.

* Cf. supra, Eq. (5.1).
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Let us consider briefly one example of the method used in obtaining this first approximate solution.
To begin with after we have substituted our zeroth-order approximation Egs. (7.59), we will obtain

equations of the type:
7+ wl =Nt . (7.61a)

The solution to Eq. (7.61a) under the assumption that 7(0) =%(0) =0 is the following:*
1 [
20 = L [N sin e — e (7.61b)
wo

Now let N(t) = a(t) cos wit. This N(t), in general, represents the function which will arise out of the
bracketed terms in Eq. (7.59). w, is, of course, of the order of magnitude of the frequency of the emitted
radiation. o(t) on the other hand is a function of the angles between the radius vector and the coordinate
systems, and, as a result of this, its time change will depend on the heat motion of the molecules. Thus a(r)
will vary quite slowly in comparison to cos wy. Now let us substitute the expression for N(t) into Eq.
(7.61b) and expand the resulting cossin integrand to obtain the following:

t t
n(t) = ;— {sin wet fa()) (1 + cos 2agr)dr — cos wet fa (6) sin 2uwor dr) (7.62a)
Wo [} 1]

If we let T = 2x/w, that is, T identical to the period of the electronic oscillation, Eq, (7.62a) becomes:

&+DT  (k+DT 107

L%‘ { sin wot a(ry) [i{: dr +k{ cos 2wor dr] — cos wota(mk') f sin 2w 7 dr ) (7.62b)
2wo

7(t) =

We have taken a(r;) outside the integral sign due to the fact that it varies so slowly during one period
of electronic oscillation. The summation over k suffices to give us any overall time period which we desire,
We may note that the integral of the cosine and the integral of the sine over a period vanishes. Thus
Eq. (7.62b) becomes: '

(t) = — sin wot 2 a(ry) Ay = ——1—— ja(r) dr sin wot (7.63)
20 2uw9 0

Eq. (7.63) furnishes the general form for the first approximate solution to the equational system given
by Eq. (7.59) as modified by the zeroth-order solution. Eq. (7.63) yields, for the specific cases under
consideration, the following solutions:

w_ 34 ¢ .
%' = == [ Acos acosvyd: sin wt
2w
¢
yzu) = g‘i fAcosﬁcos'ydtsinwot
wo
A t (7‘64)
a® = — ™ S AL — 3 cos? v) dt sin wt
wo

0P = 3P = 0; 50 = 4 cos wt
* See page 282 of Reference 205a.
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Egs. (7.64) are very enlightening in that they serve to show the manner in which the energy is trans-
ferred from the excited molecule to an unexcited molecule during the course of an optical collision. We
see that z has not been changed by the collision. In addition we see how vibrations along all three axes
in the system of the initially unexcited molecule have been excited.

Furssow and Wlassow carried forward the problem to higher orders of approximation, and they reported
generally on the results which they had attained. According to their statement, they had found that the
second-order approximation yielded no changes in the vibrational wmplitudes x,y,z;. They found that the
third-order approximate solution did yield a small change in the vibrational amplitudes for the initially
unexcited molecule. In like manner the fifth-order approximation and higher order odd approximations
yielded a rapidly converging series of corrections to the amplitude. Since this series did converge rapidly
they felt that Eqs. (7.64) should suffice to describe the energy transfer as a result of an optical collision at
large separation. We must now introduce, after the manner of Furssow and Wlassow, a few additional
quantities which will prove useful in the continuation of the calculation. First of all, we may recall that
we have considered the initially excited molecule as moving rectilinearly among an ensemble of stationary,
initially unexcited molecules. We again assume an interaction between one unexcited molecule and our
excited molecule. Let us take the vector P as the perpendicular from the unexcited molecule to the velocity
vector of the excited molecule. Let us designate by aif1y; the angles which the velocity vector v makes
with the coordinate axes. By the symbols asf:y: we will denote the angles which the vector # makes with
the coordinate axes. No ambiguity is introduced here by simply referring to coordinate axes as we may
recall that the frame of the excited molecule remains parallel to the frame of the unexcited molecule.

Let us assume that the optical collision, which serves to transfer energy from the excited to the unexcited
molecule, lasts a time interval r. If this is the case, and if we assume the collision to begin at time t = 0,

- - . v
then the collision must be initiated at a distance — ?T from .

Then after a collision of duration 7, the amplitude, for example, we may obtain from Eq. (7.64):

X0 = 34 {4 cosacosy de (7.65)

20)0 0
It is apparent as we have mentioned previously that aBy are time dependent through the heat motion
of the atoms. We would like then to find some expression in terms of time for these three angles. Straight-

forward geometrical considerations yield the following expressions for these three angle functions:

) cos ay + v(t — 37) cos

cos a =
R
cosf = p cos B3 + v(t — 47) cos B
R (7.66)
cosy = p cos vz + v(t — ;“T) €os 71
R
R = ¢ + o2t — o)
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The relations given by Eq. (7.66) are quite obvious ones among the three previously defined
vectors R, v, and A.
We may substitute Eq. (7.66) into Eq. (7.65). When the variable ¢’ = ¢t — j7 is substituted for ¢ in
the resulting expression we obtain:
+r/2
X0 = §z_4 & (p cos ag + vt’ cos a;) (p cos vz + v’ cos ;) a

2wo m V(o + 12 12)b
—-1/2

(1.67)

It is apparent that we could also obtain analogous expressions for ¥,V and ZV. We may make a
simplification for the purpose of evaluating the integral in Eq. (7.67) by letting r go to infinity and thus
extending the limits on the integral to — « and + . Again this may be justified, as has been done in
gimilar cases, in that only that portion of time immediately before and after the time of optical collision
is of any import. Thus, the extension of the limits to minus and plus infinity serves merely to encompass
regions which contribute nothing to the integral in question.

We may, by elementary means, evaluate the integrals of the form Eq. (7.67):

2 A
X1(1) = ¢ 4 (2 cos a3 cos vz - cos ay €os v;)
mwo p*
@ A 7.68
Vi = 2 (2 cos B; cos 2 + cos B cos 1) (1.68)
may pv
2 A
zZWw = & — (2 cos y2 + costy; — 1)
mwy PV

We are now desirous of obtaining the amount of energy which is transferred during the collision from
the initially excited molecule to the initially unexcited one. In doing so, let us first recall that the energy
of a classical oscillator is given by E = imax® + }kx? where we have here assumed a linear harmonic oscillator
which is vibrating in the x-direction. Since x is given by wA cos wet and k is given by mwe?, E becomes
imw®A? cos wit + 5 mw *A? sin wet. Thus, the energy is §mw;24? or the square of the vibrational amplitude
multiplied by mwe®. Hence, in the present case the energy E which has been transferred to the initially
unexcited molecule will be given by the sum of the squares of the amplitude components as given by Eq.
(7.68) multiplied by jmuw®. We then obtain for the transferred energy:

et

1 .
it -;;2- sin? 'Y1E (7'69)

€ =

where E, the initial energy of the excited molecule, is, of course, $w2A42.

Eq. (7.69) is predicated on the first approximate solutions as given by Eq. (7.64) to Eq. (7.59). The
validity of these Egs. (7.64) is assumed only for large transit distances. Furssow and Wlassow defined the
minimum distance of closest approach — transit distance — as that distance at which the transferred
energy is equal to the energy at time zero of the initially excited oscillator, that is, ¢ = E. Thus if p is
taken as the minimum transit distance Eq. (7.69) leads us to the following criteria for large distances:

1 mw,

oV et



208

In Eq. (7.70a) sin 71 has been replaced by its maximum value.

We have thus determined the energy which will be transferred during an optical collision between an
initially unexcited molecule and an initially excited one. Now in order to determine the total energy which
our initially excited molecule will lose in the course of time it will be necessary to ascertain the total loss
of energy to all the molecules in the ngighborhood. Let us assume that our unexcited molecules are uni-
formly distributed, there being IV of them per unit of volume. Let us consider a layer of thickness As
lying perpendicular to the direction of motion of the excited molecule. Then during the time when the
excited molecule is in this layer of thickness As those molecules will be capable of obtaining energy from it
which lie at distances of p, or at greater distances. Thus, the increment of energy loss by the excited mole-
cule during its passage through this layer will be given by:

sinty,—_ E (1.71a)

miug’ Pt

dE = — 2xNAs [ epdp = — xNAs
po

Now As may also be written as vdt. When this is done and when the value for 1/p.%v is substituted from
Eq. (7.70):

2
dE = — N < sin? v, Edt (1.71b)

mw,

From Eq. (7.71b) Furssow and Wlassow obtained:

E = Eoe"'“" (1.71c)
where:
= 2
3 mwy

In obtaining Eq. (7.71c) Furssow and Wlassow averaged Eq. (7.71c) over v;, and integrated the sepa-
rable differential equation which resulted. In a slightly more refined treatment in which they assumed
motion on the part of the initially unexcited molecules and where averaging was carried out over all
orientations for this motion they obtained instead of the Ty’ given above:

t =2 % N+ }sint o)
2 muw,
Here a is the angle between the electric moment and the direction of motion of the emitter.

We have thus attained in Eq. (7.71c) an expression for the attenuation of the energy of the initially
excited molecule with time. This is, of course, not the desired objective. We are desirous of obtaining the
broadening of the emitted spectral line as a result of this energy attenuation. In order to arrive at this
we shall consider the analogous case of damping by some other means such as a radiation damping of the
molecular oscillations.

First consider the equation for a molecular oscillator of natural frequency w, and subjected to a damping
of damping constant v:

mi + mwgx + myx = 0 (1.72)

For the case y K w, — which we shall find to be an excellent approximation — the solution of Eq.
(7.72) can be shown to be: '
x = xpe "2 (1.73)
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It may be seen, as we have specifically mentioned earlier,* that the energy of the oscillator whose
amplitude is governed by Eq. (7.73) is E¢™. This v corresponds to the T’ in Eq. (7.71c). Here we know
that the electric vector of the radiation emitted by our molecular oscillator will also contain the exponential
of Eq. (7.73).t The electric vector of the radiation field will be of the form:

E = E ¢/

In the usual manner the electric vector may be expanded in a Fourier integral in order to obtain the
amplitude of this vector as a function of frequency:

1 1
B = o o= =2

We may thus obtain the intensity of the emitted spectral line as a function of frequency by simply
taking the absolute square of the amplitude of the electric vector:

= V)2 ')’/2
I(v) = |E()[* «c const. o oy T G2 (1.74)

It can then be seen from the familiar Eq. (7.74) that v or T is the half-width of the emitted spectral
line. Thus, from Eq. (7.71c) the half-width of the emitted spectral line is found to be:

= ¢ N (1.75)
3 mu,

It is then apparent that the effect of this energy transfer at large transit distances is a damping of the
molecular oscillations resulting in a broadening of the spectral line whose half-width is given by Eq. (7.75).
Finally the half-width 5,’ should be multiplied by the oscillator strength of the transition under consideration.

We thus have treated collisions at transit distances of greater than p, as defined by Eq. (7.70). Now
with Furssow and Wlassow we may essentially define p, in analogy to the optical collision diameter of
Weisskopf. There the optical collisions, which have already been treated, resulted in only a change in
the amplitude of the electronic oscillations, Furssow and Wlassow considered collisions at less than this
optical collision diameter as changing not only the amplitude but also the orientation of the electronic

oscillation. For these latter cases they simply took the half-width as given by the Lorentz-Lenz-Weisskopf-
etc. collision theory:**

2
8 = wpEN<v> = 2« LN (1.76)
mw,

where again 5, is to be multiplied by the oscillator strength for the collision.
* See supra, Eq. (7.69) and preceding.

t Cf. supra, Sec. 1.8,
** All of which would appear rather paradoxical.
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Finally the line broadening as a result of near and distant collisions may be assumed as the algebraic
sum of the widths due to the two types. Thus, we eventually arrive at the line half-widths as obtained

from the classical energy transfer theory:

5= f(5, + 87 = %’;f_’_ Nf (1.77)*

muwy

A comparison of Eq. (7.77) with Eq. (7.57) shows that the Furssow-Wlassow theory yields line widths
4/3 times as great as the Weisskopf theory.

The manner in which the dipole interaction between two like molecules causes a transfer of the oscilla-
tory energy from the initially excited molecules to the remaining initially unexcited molecules has been
shown. This energy transfer then acts as a damping force on the oscillatory motion of the molecule and,
as a result, the emitted radiation is broadened into a spectral line of finite width. We shall see that a quantum

consideration under certain specific assumptions leads to approximately the same results.

7.11. QUANTUM TREATMENT OF LOW PRESSURE SELF-BROADENING

We have sketched qualitatively the quantum mechanical theory of resonance broadening by energy
transfer, and our first task in a quantitative consideration will be to ascertain the time change of eigen-
functions — probability amplitudes — of the excited molecule due to this energy transfer.

Again the system is initially taken as two like molecules one of which is excited and one of which is
unexcited. The motion of the molecule will be considered classicallyt as is normally done in problems of
this kind* with quite reasonable justification. The potential of interaction between the two atoms is still
the dipole potential of Eq. (7.58). The symbols such as #, a,, ete. which were utilized in the classical consid-
eration will again appear with the same connotation.

Since specific assumptions regarding the states of the two molecules must be made, the simplest ones
possible are utilized, namely, the unexcited molecule is assumed to be initially in a ground state where
Vimn (1) = ¥ (1), and the excited molecule is assumed in a p state, with eigenfunction ay,, o (2) + c¥n(2).
This eigenfunction assumes that the emitted radiation is polarized in the z direction since Am = 0 — the
only transition possible from this eigenfunction — corresponds to such a polarization. We might look
ahead a bit at this point by a consideration of the eigenfunction of the excited molecule. The probability
that the emitter is in the state m10 at time ¢ is given by |a(t){?. Thus the behavior of a(f) will tell us the
probability that the emitter will tran~fer its energy to the initially unexcited molecule in the course of time.
Qualitatively at least it is apparent that this determines the state lifetime change and the resulting line
broadening.

In the considerations which led to Eq. (7.20) no spatial degeneracy was considered so that only a
two-fold degeneracy resulted for the system. When we consider the three values which m may assume
when either of our molecules is in the first excited state, a six fold degeneracy for the first excited state

* The Jablonski theory provides the only exception.
T This appears intuitively justifiable, but for a mathematical justification one may consult Reference 127.
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of the system results. The ground state of the system remains, of course, non-degenerate. On the basis
of these considerations we choose as eigenfunctions to describe the system during the time of transit:

v(1.2,) = {al(i)¢uoo(1)‘pm1o(2) + & V¥no(1)¥mu(2) + as(E)¥noo(1)¥m1-1(2) + by()¥mio(1)¥ne(2)

En4+-Em B,
+ b(¥mu(D¥an(@) + by(O¥m s (Daan(@) Je ™K + axd)¥nso(D¥nsn(@e ~7% " (7.78)
The Schrodinger equation for our system — neglecting the radiation field — is:

[HQ) + H) + V200020 = i}{%\b(l,&t) (1.79)

In Eq. (7.79a) H(1) is the unperturbed Hamiltonian for the initially unexcited molecule; H(2) is the
Hamiltonian for the initially excited molecule, and V(1,2,t) is the perturbing Hamiltonian introduced by
the dipole interaction as given by Eq. (7.58). Let us now substitute Eq. (7.78) into Eq. (7.79a) to obtain:

3 3 n 3
ih 2 i Vit K S bibi + o Vaan() aan(2) 65" + 3 0Bl
i= i= i=1
3 3 3
+ 2 bEbi+ 20E (D) ¥aao(@) = 2 afHO) + HQ) ¥+ 2 b{HD + HE) ¥

+ alH(1) + H(2)]¥aoo(1) ¥no0(2) + F(1.2,8) ¥(1,2,0) (7.79b)

In Eq. (7.79b) E; = E, + E,, and ¥, represents the ¥y;;,(1) ¥nm(2) going with the appropriate a; or
b, Let us find a; as an example.

Eq. (7.79b) is first multiplied through on the left by ¥,00(1)¥m10(2) and the resulting expression is inte-
grated over all space, The result is:

ihiy + aiE) = By + aiBp + [ ¥00(1) ¥m10(2) V(1,2,8) ¥(1,2,0) dr (7.80)

The results obtained here are entirely due to the orthnormality of the unperturbed eigenfunctions of
the two molecules. In the integral on the right all terms containing [ ¥,00(1) Vi,0dr will disappear since
V(1,2,t) averaged over the spherically symmetrical ground state is zero.* As a consequence, if we adopt

the convention:

Vtonoo = S ¥n00(1) ¥m10@) V(12,8 ¥mio(1) ¥o0(2) dr (7.81)
we obtain for a:
#is = Voo b1+ Vilisobs + V01 o0 b (7.82)

In this manner we may obtain the equations for the time rate of change of the coefficients in

Eq. (7.78) as:
n00; m10 n00; m10 n00; m10

iHas = V1000 b1 + Vitiinoo B2 + Vonyotimoobs
iHes = Vioon b+ Vilioe b+ Vil Tinoebs
iHis = Vintorto b+ Ventinss Be + Viorinao bs (7.83)
i = Vioomio @1 + Vecormt @2 + Voo mios s
i}{&2 = Vrolol';?g a + V:'Olol.‘r::(lxl) a + V:‘(:Ol;;;(lx-)—l as
iHb; = V;"JonJI'BOO a + V::)lo—;:l';oo a; + V:'(;O_:nln-(-xl) as

* Cf. supra, Eq. (5.1).
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It is reasonably obvious that the selection of two higher and more degenerate states would have com-
fg plicated the problem a bit.

Now it may again be assumed that the interaction between the two molecules begins at time ¢ = 0
. . v . .
w when the emitter is a distance -21- from #. On this basis we may solve the quantum mechanical problem by

2 a series of approximations.

We have assumed that previous to the introduction of the dipole interaction the upper state is a p state
wy with m = 0. Thus at time ¢ = O there is a‘ﬁnite probability of Y,00(1)¥m10(2) or ¥m00(1)¥noo(2) — there
wy will always be a finite probability for the existence of the ground state — but no probability for the existence
ooof any other state. These conditions lead us to the zero order solution:

a1(0) = a; a(0) = ay(0) =0
bi(0) = bs(0) = bs(0) = 0; (0) = ¢ (1.84)

For the first approximation it may be assumed that a; remains a constant during time 7. This would
mumean that no probability for ¥,;1(2) or ¥p;-1(2) exists during this interval. This yields:

aa=a; ;a=ay=10
m10; n00

= _a_ . . ____a_ - mll; n00
b i/bf VnOO;mlodts b = "}lbr V"oo;,.mdt (1.85)

ml—1;n00

a T
Rbr VnOO;mlO de

b;

In order to determine the matrix elements of V, it is apparent from Eq. (7.58) that the matrix elements
oloof , ¥, and z must first be determined. Hydrogen-like wave functions of the form of Eq. (5.7) are utilized
{o¥for this purpose. As an example:

00 |3l m11) = [ Vaoox¥mudr = 3;{ of Zof [Roo(®)] [ sin o cos o]

[Rya(r) sin @ €% sin 9d9dpdr = % %r,.,,. = (m11 || n0O)

[ ]
yvwhere r,, is the radial matrix element [ 3 R,o(r) Ry, (r) dr.
0

In like manner the non-vanishing matrix elements may be found as:

(100 |«| m11) = (m1l |s] n00) = %\/_;_ -

(n00 [x| m1 — 1) = (ml — 1 |x| n00) = ~ —;—-\/—-i: Fam

(100 |y| m11) = (m11 [y| n00) = _2!_\/_? . (1.86)
(000 [y m1 = 1) = (m1 = 1|5 n00) = — 3-\/%

1

(n00 (2] m10) = (m10 |z] n00) = — rpp
V3
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In finding a matrix element of ¥ we carry the angle functions as constants — it may be recalled that
these angle functions depend on the heat motion of the molecules. Thus a matrix element of V is simply
some combination of the matrix elements of x1, y;, . . . . Now, for example, in the case of V::&’:fg the
matrix element of all the terms in ¥ except s123(1 — 3 cos® v) vanish. As a result:

V mooimi0 = ‘;{,‘ (n00 3| m10)* (1 — 3 cos® )

Finally then Eq. (7.85) becomes:

b - %{ &(n00 || m10)* f %M dt
0

h=h=-2 3’;—2 (00 5| m10)® / 008 7(cos e i cos B) g (1.87)
0

Again, as in the classical case, we allow r (the collision time) to approach infinity and integrate Eq.
(7.87) to obtain:

1
by = = 2¢(n00 [2] m10)* — (1 — cos® y1 — 2 cos® 7s)
g vp? 1 (7.88)
by =b, = — -;—(\/Ee'(noo |z| m10)2 ;, [cos v1 (coe @y — i cos B;) + 2 cos vs(cos as — i cos )]

where Eq. (7.66) has been utilized for the afy. From Eq. (7.88) it is apparent that the probability for
excitation of the initially unexcited molecule is:

Ibilt + (Bt + [Baf? = a? j,"%, sin? 71(n00 [+] m10)¢ (1.89)

'We may now carry out a second approximation to find ay, still under the assumption a; = a; = 0:
las* + [Bif* + [Baf? + [Baf? + |oif* = [a]* + |e* (7.90)
and, if we suppose |ci|* = |c|?, the change in |a[* may be determined from Eq. (7.90) as:
Alal* = |ayf* = [a* = — ([Bf* + [Baf* + [B]")

- — |at “;’ sin? 71(n00 [s] m10)¢
= — [af m::' - fand ,‘}.-T' sin® 7, (1.91)

2 nm
where fum = m;;( (n00 |z| m10)2, the oscillator strength of the mn transition.

The similarity of Egs. (7.91) and (7.69) is quite apparent, especially when the E — |aj* analogy is
considered.
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We earlier set the condition ¢ = E for determining p,.* Similarly, we now establish the criteria for o,
as A |a[* = [a[%, that is, the change in the probability of finding the system in the state Yo (1)Ym,(2) is
equal to th? probability of finding the system in this state. From Eq. (7.91) p, may then be defined as:

Po = \}m:’ f,;,..:l (7.92)

where sin v, has again been given its maximum value.

To this point in the quantum mechanical development of their theory Furssow and Wlassow proceeded
in a rather straightforward manner, but their subsequent machinations should at least be critically con-
sidered. We might recall that when we viewed resonance broadening as a case of identical particle degen-
eracy the two molecular problem was solvable, but the N-.atomic case had no apparent solution. What
Furssow and Wlassow did was extend the results of the two molecular case to that of many molecules, and
if this procedure is noc justifiable in the degeneracy picture, it should not be any more justifiable in the
energy exchange picture. We must, therefore, agree and keep in mind the fact that this is simply an
approximation, no matter how good a one.

If there are IV molecules per unit of volume of our gas then surely 2xpdpvN of them appear per
units of time lying a distance between p and p 4 dp from the cmitter. Furssow and Wlassow asserted this
to mean that the total change of the probability per unit of time is:

0

d, ., , € D /21rpdp
—_ = .- —_— n —— N = — 2
1l lal o fon' 5 S0t [ = 7 |af

Jam N sin? v, (7.93)

mn
)

If Eq. (7.93) is averaged over 7, and the resulting equation solved for |a|?, the quantum mechanical
analog of Eq. (7.71c) is obtained:

laf? = Jag|* ™™ (1.94)
where:
2 e
T, = = fnm N
3 mwym

Thus the state lifetime has been decreased by the energy exchange as predicted, and this decrease is
dependent on the gas density.
Now let us write down the Hamiltonian for the system, excited molecule plus field:}

H = Ha + H/ + Ha/ (7.958)

In Eq. (7.95a) H, is the Hamiltonian for the molecule alone; H; is the Hamiltonian of the field, and
H,; is the Hamiltonian of the field-molecule interaction. Eq. (7.95a) may be written as

H=H,+H,;=H,+V (7.95b)
and the Schrodinger equation as:
2 = (5, + V) (1.95¢)

* See supra, Eq. (7.70) and preceding.
t See supra, Eq. (3.51).
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When we assume that ¢ = Za,¥, where the , are the eigenfunctions of the unperturbed system, we
r

may utilize the method by which we arrived at Eq. (7.82) to find the a,. Let us recall that the symbol r is
a quantum conglomerate of the form nN.IV; . . . . where, to begin with, n specifies the state of the molecule
in the system and the N; specify the states of the i-th radiation oscillator.*
The analog of Eq. (7.82) is then:
En NN . = Ea NN, L

o/ s n'NiV'Ny' ..o $ ¢
"‘(an’Nx'N:’ e = Z HnNnN: vio GaNiNy,.. € h (7.96a)

nNiNs. ..

where, of course, the |a,|? still have a probability interpretation.

It is reasonable to assume here that at time ¢ = 0 the molecule is in the excited state, and there are no
photons in the field. This would mean that a,q.. . ¢,0...(0) = 1 while all other a,y,5,...(0) = 0. At some
later time the molecule will be in the ground state and there will be a quantum of type s in the field where
v, is the frequency of this quantum, and »,,, is the frequency of the molecular transition mn. Under the
assumption that all amplitudes do remain zero except ang. .. o,0...(t) during the time involved in this tran-

sition we obtain:
n00...1,0...

Hango...00...(8) = Huoo 0. Gmoo... (£) e “mn=us (7.96b)
Since w, is the frequency of the photon which is present in the field after the transition of frequency
wmn has taken place, w, is of the order of wy,.
It is clear that the probability amplitude a,q, . (t) will be the same as the probability amplitude of
the initially excited molecule in the state designated by the quantum number m. In addition we may find
a(t) from Eq. (7.94):

1,

amoo...(t) =a(t) = e 2 (7.96¢)

When this expression is substituted into Eq. (7.96b) and the resulting equation is integrated over time

0 to t we will obtain:
$wg—cwy, )t — 2
e ' w2 -1

oo 100...(8) = Hgo 00
1,0 00...00. . h[w, o+ i( %ﬂ (197

After a time ¢t — oo the initially excited molecule will surely have undergone the transition to the
ground state. Now the intensity of a frequency w after this time will certainly be proportional to the
probability of a photon of this frequency being present in the radiation field. These considerations lead
to the following expression for the intensity distribution:

const

(@ — wn)? + (?_o)’ (1.98)

I(w) = comst |ap...10... (®)]* =

2
From Eq. (7.98) it is apparent that our half-width is given by the following:

2 &

3 muwp,

5, = T, = fnm N (7'99)

* Cf. supra, Eq. (3.60) and preceding.
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It can be seen that Eq. (7.99) yields the same results for the half-width as Eq. (7.75) which latter
equation was found for the case of distant collisions.
For the case of near collisions let us utilize the Heisenberg uncertainty principle in the form:

AEAt = K

where we shall now assume AE to be the width of the state and At to be the mean lifetime of the state.
Let us suppose that the life of a state is terminated by a collision so that Az = r where r is the mean
time between collisions. This means that the width of the state will now be:

¥ X (2

At T muwy
from Eq. (7.53).
Or: b= to=LE oo @ ¢ N (7.94b)
) | may
Finally we obtain for the half width:
b=8+38 = 2x L g N (1.94¢)
3 mwy

In the main Furssow and Wlassow considered their results to hold only in the case of low gas densities.
It may be recalled we have questioned the Furssow-Wlassow procedure in which they work out the broad-
ening effect of one like molecule and then simply extend these results to the case of IV similar molecules.
Furssow and Wlassow felt that their results were only applicable to low gas densities. In a later paper
on the subject they investigated the self-broadening of a spectral line in the case of high gas densities.
They found it necessary to use a slightly different although comparable method of approach. We shall
discuss this in greater detail at a later point.

'We have considered several theories, the reason for the existence of which is the explanation of the self-
broadening of spectral lines. In the time honored tradition Houston™ now entered the field to show that
theories of (a) Furssow and Wlassow, (b) Weisskopf, and (c¢) Jablonski and Margenau® were essentially
equivalent. “A complete analysis, however, shows that they are merely three approximations to the exact
quantum mechanical treatment.”?

7.12. EQUIVALENCE OF STATISTICAL, INTERRUPTION AND ENERGY EXCHANGE THEORIES

We begin, with Houston, by making the assumption which was previously utilised by Furssow and
Wlassow, that is, that our pressure is low enough to make a collision between one excited and one unexcited
molecule a good approximation. The method of setting up and solving the problem which was utilized by
Houston is essentially the one of Furssow and Wlassow,{ but, since it is a slightly more comprehensive
application to resonance broadening let us rapidly carry out the formulation.

* Seo supra, Chap. 5.

t C£. also supra, Sec. 4.22.
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We begin by considering two electronic states, let us say, the ground and first excited states. In addi-
tion a continuum of translational states is contemplated. We then obtain for the electronic eigenfunctions
of our system of two atoms:

U, = ug(1)uy(2)

Up = uy(2)us(1) (7.100)

Uy = uo(b)u2)
where u, specifies the ground state and u, the excited state. The radiation field may be described by the
function F,, when there are no quanta in the field. The field may be described by F,, when there is a
quantum of energy hv in the field. Finally if we let vi(R,t) be the function of the nuclear motion before

the collision and v,(R,t) be the function of this motion after the collision, we will obtain as the eigenfunctions
of the three states which are of import here:

VYo = Un(RO)F, exp [~ (i/K)Eu]
¥ = Upi(ROF, exp [~ (i/K)Ed] (7.101)
%o = Us(RA)F, exp [— (/M) (E, + b)Y

The Hamiltonian of our system will be:

H=H,+ H;,+V(R)+ S (7.102)

where H, is the Hamiltonian of the unperturbed atoms, H; is the Hamiltonian of the unperturbed radiation
field, V'(R) the Hamiltonian of the dipole interaction between the two atoms, and S the Hamiltonian of
the interaction between the atoms and the radiation field.

The solution to the Schrodinger equation which results from the Hamiltonian of Eq. (7.102) is surely:

¥ =ay, + by + ¥y (7.103)

In the same manner in which we obtained Eq. (7.83) we may now obtain:

P= — Fi(am bYb — 7:, (a ISIc)cexp[ji{- (E, — E, — hy):]

— —}—l{— ® V| a)a — L b 'S c)cexp[/—”i- (B, — E, — hv)t]

(7.104)

Qe
i

'4
6= - 3['— (c S| a)a exp [—j‘{_ (Ey — E, — hv)t] - )—-’( (c |S[ b)b exp [— :K'- (B — E, - hv)t]

We are here interested in the matrix elements of V” but not in those of S. The reason for this is appar-
ent when we consider that the matrix elements of S are to those of ¥ as the natural width of the line is to
the self-broadened width. On this basis Houston neglected the matrix elements of S. A solution to Eq.

(1.104) is surely:
a= A exp [— )i‘/(a |V[b)dt] + B exp [)-i?/(a v b)dt]

b= Aexp[-— j{i—/(alVI b)dt] - Bexp[)—-i—//(alﬂ b)dt]

where |A4|* 4 |BJ* = 1/2.

(7.105)
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Again we consider molecule 1 as initially excited and molecule 2 as initially unexcited. This means
that a(0) = 0 and b(0) = 1. These initials condition yield:

a= —isin —}[(alV]b)dt

: (1.106)
b = cos ;7‘ / (@ |V] byde

We are treating the nuclear motion classically, and as a result the molecular separation will have a
precise value. As in Eq. (7.29b) we obtain:

a o
@(Vb) = o = T (1.107)
where a is a constant, and p is the distance of closest approach.

Let us substitute Eq. (7.105) into the equation for cin Eq. (7.104). We will obtain then for ¢ functions

of the form exp{ - )1{—- [ / (a|V]| b)ds + (Ey — Eo)t:l + iwt} - Now cis the probability amplitude for the

existence of a photon of frequency » in the field. Thus it is necessary for us to show the equivalence of ¢
with J(w) in Eq. (6.5a) in order to show the equivalence of this theory, which is essentially the Furssow
and Wlassow theory, with the theory of Weisskopf. From Eq. (7.107) it is apparent that the integral of
the matrix element corresponds to Eq. (7.54) of the Weisskopf theory. Thus, the integral of w,(r)dr appear-
ing in Eq. (6.5a) corresponds to the bracketed expression in the exponential which appears in the expres-
sions for ¢. Finally the w appearing in the expression for c is the frequency of the photon in the field corre-
sponding to the » in Eq. (6.5a). Thus, the correspondence between the Furssow and Wlassow theory and
the Weisskopf theory is demonstrated. The demonstration of this equivalence then leads us directly to
an equivalence between the Jablonski theory or the Margenau theory and the Furssow and Wlassow theory.*

In this same paper Houston used the Furssow and Wlassow method of attack to show that all members
of a Russell Saunders multiplet are broadened to the same extent in the case of a resonance broadening.}
He compares his results to the experimental work of Hughes and Lloyd.” These authors had experimen-
tally demonstrated the equality of the broadening of the two members of the first doublet of the principal
series of potassium. In addition they had found the predicted dependence of the half-width on N. Unfor-
tunately, Houston’s theoretical calculation of the half-width of the members of this doublet varied by a
factor of five from the observations of Hughes and Lloyd. Houston felt that this discrepancy lay in the
uncertainty as to the vapor pressure of the potassium as a function of temperature. We shall see that
Furssow and Wlassow offered a quite different and more basic reason for this discrepancy.

We have noted that the earlier Furssow and Wlassow theory!” was not applicable to the case of high
like-gas pressure due to the method of approach utilized by these authors in attacking the problem. In a

* See supra, Sec. 6.4.
t The preponderant weight of subsequent experimental data indicates this to be incorrect.



219

later paper on the subject these two authors ttacked the case of resonance. broadening for high like gas
pressure.®® Schulz and Rompe'®® 1%* had applied the Furssow-Wlassow theory to the broadening of spectral
lines, but the writers of the theory felt that theirs was a misapplication. The basis for this viewpoint is of
itself interesting and leads to the refined Furssow-Wlassow method,

7.13. HIGH PRESSURE QUANTUM RESONANCE BROADENING

The theory was really predicated on a collision between two particles. Now if, as in the Schulz and
Rompe experiments, we take w, = 1.02 X 10'® sec.”, f = 1.3, T = 6000°, we will obtain a p of approxi-
mately 5.35 X 1077, Then with the pressure used by Schulz and Rompe N = 2.57 X 10!® cm.”3. This

. . ., . 4 . . . .
means that in the “sphere of action’ we will have — 7N = 17 molecules. This in turn means that in the
P 3

sphere of action as defined by the optical collision diameter at any time there will be approximately 17
particles. Thus, the approximation of a two particle collision is hardly reasonable.

A modification of the first theory is certainly called for, and, in this paper, Furssow and Wlassow*s
set out to calculate the broadening of the resonance level for this higher pressure case.

Let us begin by supposing the gas density sufficiently high that we can expect a large number n of
molecules within the sphere of action. If we allow this system of n + 1 molecules to possess two levels,
the resonance level and the ground state, the possible eigenfunctions to describe the system in the upper
state will be:

Vo = w(0uy(l) . .. uy(n)
Yo, = up(0)us(1) . . . uy(n)
Yo, = uo(0)uy(l) . - . wa(n) (7.108)

where we have assumed molecule 0 to be the initially excited atom.

The Hamiltonian of the dipole interaction will be:

U=2z V(EE) = ZV(0.k) 4+ 22 V(kE') (7.109)
ke k=1

The solution to the Schrodinger equations which results from this interaction Hamiltonian is surely:
¥ = a\l/a + z bk\l’bk (7.110)
k=1
Using methods which have certainly become familiar we find:
“ n
tha = Z (a|U| byby
k=1

ik, = (b, U] ada + 3 (b |U] by)by (1.111)
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Again under the initial conditions stipulating that molecule 0 1s ir stially excited we obtain a(z) =a(0) =1
and 5(0) = 0. Subsequent to the time : = 0 we can expect the  nsfer of energy from the initially excited
to the unexcited molecules to proceed as governed by the matr ..cment (2|U] b;). In addition Eq. (7.111)
tells us that there will be a secondary transfer of energy among the initially unexcited molecules as gov-
erned by the matrix element (b |U| b;). “‘Generally speaking one can characterize the whole process as a
process of diffusion of the excitation energy from the atom initially excited.”® We now introduce the
approximation that the secondary energy transfer process as governed by (b |U| b;) can be disregarded.
This allows us to rewrite Eq. (7.111) as:

ihd -—-,}j1 (a |U| )b, (1.112a)
ihb, = (b U] a)a (7.112b)

We pext introduce an additional approximation to the effect that U is not time dependent. This is
nothing more nor less than saying that the thermal motion of the molecules is 80 small as to be considered
negligible during the energy transfer process. As we shall see, at high pressure for the resonance level
this is a reasonable approximation. Now let us take the time derivative of Eq. (7.112a) and substitute for
b from Eq. (7.112b) in the resulting equation. This yields:

—MKa =a % (a |U| by)? (7.112)

k=1

If we now ignore the angular dependence of the dipole interaction, there results:

i+ pla=0 (1.114a)
i 7.114b
P 2R T (11148

A solution of Eq. (7.114a) which satisfies the initial condition a(0) = 0 is:
a = cos pt (7.115)

If we again assume that the condition a = 0 — that is, the energy has been transferred from the
initially excited molecule — determines the collision time, 7, then from Eq. (7.115) there results:

7l'
T = e

(7.116)

=

We wish to develop a in a Fourier integral. We have only obtained an approximation for a, and
another approximation which should be almost as good is the step function:

a=1 for 0t

a=0 for 0<et> 1~ (7.117)
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In a quite straightforward manner we may write down the Fourier integral for a as:

+o
a = f g(w)e‘“‘dw (7.118a)
4o r
, ‘ , gt
o) = & / ae o = / 1.edy= L 127 (7.118b)
2w 27 2r  iw
- 0

The distribution of the energy in the level will surely be given by the absolute square of the Fourier

amplitude g(w):

1 1-— coswt

L S it 7.119
gl = o = (7.119)

Eq. (7.119) gives us the desired result for a specific collision time 7. It would now appear reasonable
to average this expression over all collision times in order to obtain the observed distribution in the level.
Let us suppose that w(r)dr is the probability that the collision time lies between r and r + dr. Then for
J(w) we obtain:

[ 4
J@) = [ 8@l w(r)dr (7.120)
Let us utilize the expression:
w 2
== 7.121
T TP (7.121)

for a change in variable in Eq. (7.122) as follows:

w(r)dr = '—“-'-(i%i‘:;—)—dv - — I'()dv (1.122)

In order to find I’(v)dv we may proceed in the following manner. Let us establish a configuration space
of 3n dimensions whose volume is I' = v" where v is the volume of our gas. Now if we temporarily dis-
regard the intermolecular forces, we can expect equal probability for the occupation of any portion of this
space. This means that the following relation will hold:

r

I'G)dy = ér_ (1.123)

where AT represents that portion of configuration space for which our » lies between » and v + dv. This
value of » will, of course, depend on the distribution of the R in Eq. (7.114b). Thus:

AT' = (4m)" [ ... [ R?R?...R,*dRdR;. .. dR, (1.124)

The analogy to Margenau’s Eq. (5.23a) is apparent. Our solution then is given by Eq. (5.41) as:

_ 4xtaNt
e 9r

2 1rN\/;

') = - 7.125
®) =3 0 (7.125)
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We may now transform back to our variable 7 by utilizing Eq. (7.122). We obtain:

w(r) = 2L g (7.126)
Vr

2
T = i;— NVra = % N (7.127)

muwo

Egs. (7.116) and (7.126) may now be substituted into Eq. (7.120) and the results integrated to obtain:

11— e

Iw) = — 7.128
@) 272 w? ( )
as the distribution of energies in the resonance level. For the breadth we obtain:
2
s=250 =3 < N (1.129)

mwo

It is Eq. (7.129) which Furssow and Wlassow used to determine the resonance level width for com-
parison with experiment. In order to find the spectral line width, it would appear reasonable to assume
that we must needs have a knowledge of not only the resonance level width but also the width of the level
from which the radiating transition originates.* The phrase “from which™ leads us to the next consideration.

Furssow and Wlassow felt in their second paper (they experienced no such qualms in their first) that
their results should ~uly be applied to transitions proceeding from upper levels to the resonance level,
that is, these results should not be applied to the transition from the resonance level to the ground state.
A short consideration renders this assertion quite plausible.

Let us suppose that the initially excited molecule undergoes a transition from the resonance level to
the ground state with the accompanying emission of radiation. This emitted radiation may be absorbed
by one of the unexcited molecules where ahsorption would not be possible were this radiation the result
of a transition to some level above the ground state. This process, which should not be confused with the
trausfer of energy without accompanying radiation has certainly not been considered in the theory, and,
since it can be expected to have some effect on the line broadening, this theory cannot be expected to hold
in such cases. These authors felt that the failure of Houston’s™ results to agree with those of Hughes and
Lloyd™ could be traced to this cause.

The justification for the assumption of fixed atoms, that is, —5— (a|U|by) = 0, which led to Eq. (7.113)
4

appears worthy of note here. Let us consider the Rompe and Schulz case.'™ The pressure is 80 atmospheres
and T = 2800°. The experimental width was found to be § = 7 X 10" sec. ~! so that the mean life of the
resonance level is » = 1/8 = 1.4 X 1073 sec. The mean relative velocity is v = 1.3 X 10°® em. ‘sec., vshich
leads us to the conclusion that during the mean level life we may expect our atoms to move a distance
vr = 1.8 X 1078 cm., or the order of their own diameter. Thus, the approximation appears a reasonable one.

Finally let us consider the agreement which Furgsow and Wlassow’s high pressure theory gives with
the results of Schulz and Rompe.

* The complexity if not impossibility of computing the width of a higher level may be inferred from the preceding work.
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T Pressure N x 10-19
°K) (atmos.) (cm.=3) & Theor X 1012 Sexp X 10712
7800 20 1.83 1.83 2.64
6000 21 2.57 2.55 3.01
7800 80 7.56 7.32 6.98

Table (7.1). Widths of the resonance level of Mercury. (After Furssow and Wlassow?s)

7.14. COMPARISON OF SOME EXPERIMENTAL RESULTS

Furssow and Wlassow explain the worst discrepancy in Table (7.1) by the assertion that Schulz and
Rompe probably did not measure their temperature correctly, but more important than this, let us pause
for a moment to consider just exactly what numbers we are comparing. Let us specifically consider the
second row of Table (7.1). The experimental results are from the first Schulz and Rompe paper.*

Now Furssow and Wlassow claim that 2.55 X 1072 gec. ™! is the width of the resonance level of Hg
which happens to be a 3P, state. In order to find this width by Eq. (7.115), Eq. (7.113) requires that we
utilize the wave length of the resonance line which, for Hyg, is 25374 (2536.524). In addition we need the
f value from the resonance transition (*P; — 'S;) and Furssow and Wlassow used the value 0.025 from
Schulz and Rompe. These values when put into Eq. (7.115) do indeed yield 2.55 X 107'2 gec. ™!, but is
3.01 ¥ 1072 gec. 7! the level width from experiment? Let us consider the Schulz and Rompe results more
closely.

We consider Fig. (7.2). The solid line in the figure is an example of one type of trace — the type which
will concern us — which these two authors obtained. The circles represent the application of a dispersion
distribution to the trace. Now 3.01 X 107" gec. ™! is half the line width at half height of this dispersion
distribution for the Hg spectral line at 101404 corresponding to a tramsition from the 'S, (seventh shell)
to the 'P; (sixth).

We might finally note that Schulz and Rompe obtained a symmetrical distribution for the Hg lines
in several cases. thus agreeing with the earlier theory, but in others a Margenau shape occurred. We have
very little basis for comparison here, however, since the theory was worked out initially for the resonance
line only and subsequently just for the resonance level.

Let us now compare the equations of Weisskopf,'® Margenan and Watson,?®® and Furssow and
Wlassow® with the results of some later experimental work — we shall not compare Houston’s since com-
parison only serves to show that the members of a Russell-Saunders multiplet are almost never broadened
by the same amount.

To begin with the three equations for the half width are:

2

Weisskopf: b= 2 fuN (1.57)
mw,

2

Margenau and Watson: 6 = ~ -2 JanN (7.32)
3 mwy

Furssow and Wlassow: & = R fom N 1.7
3 mwy

in frequency units ».
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In 1940 Shang-Yi'" conducted a study of the resonance doublet of rubidium (?P;,— S, .,) and
(%P, ;3— %S;,2). We might preface our remarks by noting that the results obtained by Shang-Yi do not
provide much of a justification for the resonance theories so far obtained.

Firstly, symmetrical lines were obtained only for pressures up to 1 mm. Above this pressure asymetries
appeared in the lines. Furssow and Wlassow do not claim application for their high pressure theory to
resonance lines. Other than this fact all theories so far — save that of Jablonski — yield symmetrical
intensity distributions. We might then take this as an indication for the pressure at which the low pressure
Furssow and Wlassow theory fails.

Insofar as the half width is concerned we can hardly consider widths of the asymmetrical lines, at
least not with much confidence, since a dispersion type line shape was utilized by Shang-Yi to compute the
half-width from the experimental data. Thus, the usable data consists of half-width measurements for the
two lines at five pressures ranging from 1.87 X 10 "% mm. t0 9.83 X 10 ™' mm. For the pressure considered
does not seem to be exactly *. .. proportional to /V as predicted by the theory . . .”!" since it varies, for
example, from 0.72 X 1077 X 1077/N at 1.87 X 1079 mm. for the 2P, 2 — 28, 2 line, although this can per-
haps be attributed to “experimental error.” At any rate the mean values for the two lines are:

§ (*P3p)/N = 1.22 X 1077

8 (3Py5)/N = 0.77 X 1077

Table (7.2) provides a comparison of these experimental values with three of the theories propounded

Margenau Furssow and
Exp. Weisskopf and Watson Wlassow
5 X 107/N
(*Pyg—*S1) 122 .70 .73 .93
8 X 10"/N
(Py/2~*Sy2) 1 33 35 44

Table (7.2). Comparison of Shang-Yi results!™ for the broadening of the rubidium resonance lines with the theory.
JCPyy) = 2/3. fCPyg) = 1/3.

The table would appear to be self-explanatory. At about this time Watanabe'$? carried out measure-
ments on the broadening of the NaD lines. Of what he termed “most reliable” there are ten values of
the width for various pressures ranging from 1.22 X 107 mm. to 5.96 mm. which are compared with the
theoretical predictions in Table (7.3).*

* It should be mentioned too that Watanabe very nearly obtains §/IV a constant.
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Watanabe’s highest recorded pressure w:s 72.3 mm., and it is of interest to note that he obtained
no *. .. definite evidence of van der Waals force . . . at the higher pressures; likewise no appreciable shifts

or asymmetries,”®

Margenau and Furssow and
Exp. Weisskopf Watson Wlassow
& X 10"/N
Dy 5 .26 27 .35
3 X 10/N
D, .84 .53 .56 .70

Table (7.3). Comparison of Watanabe’s results!® for the broadening of the Na—D lines with theory.
fi=1/3. f = 2/3.

A discrepancy which was unfortunately to occur in Gregory’s work can, it is believed, be traced to
his use of Watanabe’s Eq. (5):

Avys = k (ﬁff_)Nsec.—l (7.130)

mynm

for the computation of his theoretical half-widths. Watanabelet k = 1/4,1/2, and 2/3 to yield Egs. (7.57).
(7.32), and (7.77), respectively.

As we may have observed the experiments have certainly “yielded results which were not in complete
accord with the various theories . ..” all of which led Gregory® to an experimental investigation of the
resonance lines of the alkali Cs.

Insofar as line shape is concerned, Gregory obtained a symmetrical line for pressures below one mm
and an asymmetrical line for higher pressures. Attempts to “. .. fit the contours to the ‘— 3/2’ type of
curve . . ."” proved fruitless. He measured the width at densities varying from 13.43 X 10'3 cm.™® (ppy
= 5.75 X 107% mm.) to 4.09 X 1073 (Pmm= 2.47 mm.). For the first member of the doublet (2P;3,;—2S; )
an average value for 8/N was obtained as 1.45 X 1077 sec.” . For the second member an average value
of .84 X 1077 sec.”! was obtained. In order to obtain these results from the experimental data Gregory
assumed a dispersion distribution. In this case the value of §/V was very nearly a constant for the various
densities.

Table (7.4) gives a comparison of Gregory’s experimental result with the theory.*

Margenau and Furssow and
Experimental Weisskopf Watson Wilassow
8 X 10/N
(2P3/g—*Sy2) 1.45 .76 .80 1.01
8 X 10"/N |

CPyg—*Sy3) | .84 .38 40 .51

Table (7.4). Gregory’s results’ for the resonance lines of Cs together with that predicted by theory. faz = .66.
firg = .32.

* With the exception of the Margenau and Watson width Gregory did not obtain the theoretical widths given here,
This is because he used Eq. (7.130) for the three theories.
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Watanabe’s highest recorded pressure w' s 72.3 mm., and it is of interest to note that he obtained

no *. .. definite evidence of van der Waals force . . . at the higher pressures; likewise no appreciable shifts

or asymmetries,’”®

Margenau and Furesow and
Exp. Weisskopf Watson Wlassow
5§ X W/N
Dy 75 .26 27 .35
8 X 107/N
Dy 84 .53 .56 .70

Table (7.3). Comparison of Watanabe’s results!® for the broadening of the Na-D lines with theory.
h=1/3. fr =2/3.

A discrepancy which was unfortunately to occur in Gregory’s work can, it is believed, be traced to
his use of Watanabe’s Eq. (5):
2.
Avys = k (—i)Nsec."l (7.130)

myw

for the computation of his theoretical half-widths. Watanabe let k = 1/4, 1/2, and 2/3 to yield Egs. (7.57).
(7.32), and (7.77), respectively.

As we may have observed the experiments have certainly ‘“‘yielded results which were not in complete
accord with the various theories . ..” all of which led Gregory® to an experimental investigation cf the
resonance lines of the alkali Cs.

Insofar as line shape is concerned, Gregory obtained a symmetrical line for pressures below one mm
and an asymmetrical line for higher pressures. Attempts to . .. fit the contours to the ‘— 3/2’ type of
curve . ..” proved fruitless. He measured the width at densities varying from 13.43 X 10'® em.™® (pyn
= 5.75 X 107 mm.) to 4.09 X 107® (pyu= 2.47 mum.). For the first member of the doublet (*P3/5—28s o)
an average value for /N was obtained as 1.45 X 1077 sec.™ . For the second member an average value
of .84 X 1077 sec.”! was obtained. In order to obtain these results from the experimental data Gregory
assumed a dispersion distribution. In this case the value of §//V was very nearly a constant for the various
densities.

Table (7.4) gives a comparison of Gregory’s experimental result with the theory.*

Margenau and Furssow and
Experimental Weisskopf Watson Wlassow
8 X 107/N
(3P3/2—*Sy/2) 1.45 .76 .80 101
& X 107/N |
(Py/2—*Sy/2) | 84 .38 .40 51

Table (7.4). Gregory's results® for the resonance lines of Cs together with that predicted by theory. fyg = .66.
fi/g = .32,

* With the exception of the Margenau and Watson width Gregory did not obtain the theoretical widths given here,
This is because he used Eq. (7.130) for the three theories.
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Other than demonstrating the fact that none of the theories propounded in explanation of the resonance
broadening phenomenon is precisely correct these experimental results indicate that the combined resonance
and, say, van der Waals forces should be investigated. Such an investigation might provide the explana-
tion of the observed line shape variations with radiating transition as well as with pressure.*

*We have not included certain of the resonance theories which may be taken as special cases of the more general theories.
The Foley theory (see supra, Eq. (6.143)) provides an example of such a situation, and the specific case of resonance broadening
follows quite straightforwardly from the general case.



Fig. (7.1). Line shape according to the more sophis-
ticated Weisskopf theory. (After Weisskopf,1932)

Fig. (7.2). The Schulz and
Rompe treatment of an experi-
mental trace (solid line) in
order to obtain a half width,
(After Schulz and Rompe.158)



CHAPTER 8
MOLECULAR BROADENING

We shall now restrict ourselves to consideration of polyatomic molecules, and we trouble to do so since
special phenomena are attached to this type molecule. Both monatomic and polyatomic molecules are, of
course, possessed of electronic structure so that it would appear obvious that we should look to the rotations
and vibrations of these latter molecules, as given, for example, by Eq. (2.38) in zeroth-order for the explana-
tion of these special phenomena. This is assuredly an & posteriori judgement here, but it certainly could
have been 2 priori synthetical one.*

Before launching ourselves into the development of moleculart broadening theory let us first introduce
two apparently irrelevant facts which will later prove of value.

8.1. COMPARATIVE ENERGIES AND MATRIX ELEMENTS

Monatomic as well as polyatomic molecules emit electronic spectra as we have noted, and in addition,
polyatomic molecules may emit vibrational and rotational spectra. Now we may say, as a rule of thumb,
of the three types of radiation that the electronic radiation is of the order of one hundred units of energy,
the vibrational of the order of ten, and the rotational of the order of one. As is generally the case with rules
of thumb, this statement is usually false, but it nevertheless can be utilized as a guide in some of our later
considerations.

As our second introductory item, let us consider the matrix element governing the absorption of electric
dipole radiation. As we are well aware, the matrix element of the electric dipole moment between two states
tells us the allowability or otherwise of our molecule undergoing a transition between the two states in
question, with the accompanying absorption of electric dipole radiation. This is surely reasonable since this
matrix element simply shows the manner in which the two states combine under the influence of this radia-
tion. Now in expressing the electric dipole moment of the molecule, it is convenient as well as informative to
expand this moment in terms of the normal vibrational coordinates of the molecule as obtained from
Eq. (2.15). The first term in this expansion will be the permanent electric dipole moment, that is, the moment
which the molecule possesses when it is undergoing no internal vibration. If, say, the molecule is undergoing
a vibration described by the normal coordinate ¢,, the subsequent terms will be functions of the q,. Then
two possible situations present themselves: (1) the vibrational matrix element or (2) the pure rotational
matrix element only is present. We wish to consider the second of these possibilities. Here only the first
term in the expansion of the dipole moment, the permanent moment, is present. Thus, unless the molecule
possesses a permanent moment, the rotational matrix element will disappear and no radiation absorbing
transition will be possible.

8.2. EARLY WORK ON BROADENING OF ROTATION.VIBRATION LINES
We might begin by remarking that the three main types of foreign gas broadening as developed in
Chapters 4 through 6 could be applied in general to the present molecular case of rotation and rotation-

* And, that is the ding an sich of that.
1 In this chapter we ehall understand “‘molecule” to refer to polyatomic molecule.
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vibration lines. Indeed in an early work Kussmann®® did just this, that is, he investigated the broadening
of HC1 rotation lines and checked the experimental results against the predictions of Holtzmark’s Stark
theory and Lorentz’ Interruption theory. He concluded that the Lorentz theory agreed best and the subse-
quent work of Lasareff®” and Grasse® on rotation-vibration lines appeared to bear this out. Thus, to this
point, those interested in the broadening of rotation and rotation-vibration lines had found no reason for
treating this type line any differently from electronic lines. The intimation that some different approach to
the broadening of the former was in order appears to have arisen first in the work of Herzberg and Spinks.®,
These investigators found a decrease of the line width with higher values of the rotational quantum number J
in the near infrared spectra of HCN. This discovery would surely indicate that rotation-vibration spectra
should be treated differently than electronic spectra, but this clear indication was rather clouded when the
work of Cornell and Watson® and Herzberg, Spinks, and Watson® failed to verify this variation with J
The hint had been given however, and it was certainly apparent that the possibility of J width dependence
and other unique molecular phenomena should be theoretically investigated.

83. INTERACTIONS BETWEEN ROTATING DIPOLES (DIRECTIONAL EFFECT)

We shall now consider as an introduction to our first broadening investigation, the interaction between
two rotators, one or both of which may possess an electric dipole moment.*
First, let us carry out a rather obvious modification of Eq. (5.1) to obtain:

1
V= — —Zer2zz; — xx; — yiy;) 8.1
R3 7

In Eq. (8.1) we have denoted the system of charges and the coordinates of those charges belonging to onc
of the rotators by i, and the charges and coordinates belonging to the other by j. Here also we have allowed
the interrotator axis to be the common axis of the two systems, and R now specifies the (large) separation
of the two rotators.

Now let us specify the dipole moments of the rotators by x; and g, and introduce spherical polar coordi-
nates for the two systems. In this case then, there results:

oo Mk

sin ¢ cos ¢, sin ¥, o8 ¢y + sin & sin ¢, sin F; sin ¢, — 2 cos O cos ds) (8.2)
3

The conditions here must conform to those leading up to Eq. (5.4), that is, we assume the separation
of the rotators to be large enough so that no charge overlap or exchange need be considered. Thus the
perturbation resulting from the action of these two dipoles is given by Eq. (5.1). Before writing this result
down, however, let us recall that we have alrcady determined the eigenvalues of the rotators in question as:

Ep = ';—‘;—J J+1)=E (2.37a)

where J is the total angular momentum quantum number and M the magnetic quantum number.

* See references 68 and 177.
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If we now designate initial states by a double prime, final states by a prime and indicate the two rotators
by the subscripts one and two, we may write Eq. (5.4) for the present case as:

l (JIHMII,J2IIM2" l | 74 I JllMlljlezl) ,z

JiJs' EJx" - EJ]' + EJ!" - EJ:'
MMy

£ = (8.3)

where V is given by Eq. (8.2).

Since no magnetic field, in which the magnetic quantum numbers may interest themselves, is present,
we simply average E® over these quantum numbers. Equal probability for them is assumed and there
results:

1

<E®> = ; z E® @.4)
@I+ 1) @Jy + 1) stumes

since each J,” level is (2J; + 1)-fold degenerate.
From Eq. (2.35a) the eigenfunctions for our rotator system will be:

V(.2) = Voueboaes = Ne=¥Pj{ (cos 9)e*M*P] (cos 9,) (85)
where the Pﬁ‘ are associated Legendre functions.

In Eq. (8.3) we shall need matrix elements of cos &, sin & cos ¢, and sin ¢ sin ¢. In order to determine
these matrix elements let us introduce three recursion formulas relating the associated Legendre functions as:

- 1
-2t P @) = G Pl 6) - Gy P ©) (8.68)
JHIMNJI+|M]+1 J-IMhUJ-IM|+1D
(1 — )P ML () = ( | (;); T ll) | )P.lrbfl(Z) - ( | (Iz)J(+ ll) ' P.'Iﬁll (2)
(8.6b)
J+ M| J—-|M|+1)
2Py = L+ M) (2.1-1- l)l PY ) + (‘——“—’—“‘—(JJ +l T P.Ig-ll (2) (8.6¢)
where z = cos .
For future reference, let us note that:
+1
_/ PHTPY " (ds = 0 for JU % J
e ”2 (J" =+ | M” N for J'' = J' (8.7a)
@J"+1H "= M)
by means of which we may obtain the normalization factor for ;4 () as:
2 1 —~ | M2
o @) = | L% 1Y : Mm P (cos 8) = NP (cos 9) (3.7b)
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Let us evaluate a portion of the matrix element of sin ¢ sin ¢ as an example.

+1 2n
AT : Iy NN M 1M M’ 1M
(UM win 9 sin o | J'M) = 2 e ? Py sindsingpe™ ¥ Py dedz
-1 0
+1 2x
'\I! 7\7/ _ -
= // 1M —’LU«p( . 2i e )P‘\IM ‘P.J;”' ( _ z2)1/2 d(pdz (8_83)
-1 0

The integration over ¢ in q. (8.8a) goes to zero due to the periodicity of ¢ unless M’ = M7 + 1. We
carry out the integration over ¢ for the case M’ = M 4 1 (AM = 1) to obtain:

NIIIVVI
/ P PR L - ) s (8.8b)
Now for M 2 Oitfollowsthat | M + 1| = | M|+ landforM <0, | M+ 1| =|M| — L First
the case M 2 0 may be considered and Eq. (8.6b) utilized to obtain:
+1 +1
A.\y//:\-/‘/‘ g R M1 ’ IV'I\I’ (Jl + | AI” I) J‘I + ‘ AI” ‘ + 1) M 1M
- . , — )2 = "
21, PJ IJ (]. Z) dz 21 (2J’+1 PJ‘ PJ ldz
-1 -1
3 .’\"jV” (J/ _ | MII [) (J/ — [ ]u'/l 1 + l)/ M
9 (2,], + 1) Py PJ’+1 dz (8-80)

Where Eq. (8.8a) told us that M may only change by +1, Eq. (8.8¢) tells us that J may only change
by +1. The J change is here governed by the orthogonality of the associated Legendre functions. Let us

further limit ourselves to the first integral in Eq. (8.8¢c) which only fails to disappear for J' = J” + 1
We are then considering the case AM = +1,AJ = +1,AM 2 0

+1
VN F M) EJ LM+ 1) / P, M P M g
2i @J + 1)

_ 1 [(2J’_’+ h@J"+3)J" =M )IJ" = M| +2) !J“Z
2i 4(JI,+1M,I|)!(J’I+[M”l)!

[ 2 J//+IMH|) :][ 1 _}
(2J‘H + 1) (J” — lM” |) 1 (2.]”-}-3)

_ [(J” + )"// _{_ 1) (J// + ]WH + 2)]1 /2
2i @J" + 1) (2J" + 3)

(8.9a)
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If we now go back and consider Eq. (8.8b) for M < 0, we again obtain Eq. (8.9a). Thus:

. . " 1TU"+M +D)UJ"+ M+ 2)]‘ 2
AL L s 4 N M 1) = -] e DO S 8.9b
(J M l sin & 8in @ l .] + 1 + ) . [ (21" l) (ZJN + 3) ( )

2i

In an cntirely analogous manner we may obtain all allowed matrix elements of cos ¢, sin & cos ¢, and

sin ¢ sin ¢ using Fgs. (8.6). We linally obtain for the desired matrix elements:

(J'M" | sin ® cos p | J'M')

1

}4 (+) 5 (M, M + 1) — ;~A (=)5 (M, M” — 1) (8.10a)

(J'M" | sin ¢ sin ¢ | J'M')

i

21 A (+) 8 (M, M + 1) + %—.A (=) 6 (M, M” —1) (8.10b)
2 i

i

(J'M" | cos 8| M) = B& (M, M") (8.10¢)

where:

1 17 2 1 12 " " __ rr 1
A(i);[g =M+ (J'=M +1)] 6(J,’J,,+l)‘[(1h’f—FMV 1) (J'FM")

12
: JOFEMT-1) (J7F ] sJ"—1)  (8.10d)
@J7+1) (2J7+3) @J7+1) @) -1

U7+ M) (J"=M")

1" ’ 7" LY 4 12
8 2[(;]_74-‘11 +D (J =M+ D) ') (J"' =M ] ST ~1)  (8.106)
@J+n @J'-1)

12
. 5 " 17 1
@I+ 1) 2J+3) ] S ’*[

Now in order to find the matrix elements of J* we merely add products of Eqs. (8.10) as indicated by
Eq. (8.2). We need not write down this intermediate result. What we finally desire, although it may not
still appear so, are the squares of the matrix elements of }'. When we square the matrix elements of 1, a

consideration of Eq. (8.2) tells us that we will obtain cross product terms of the form:
(Ji"M | sin 01 cos oy | JIYMY) (J,"M | sin Sy 8in o1 | Ji7 ML)

All terms of this form will disappear when the summation over M’ and M, indicated in Eq. (8.3) and the
averaging over Mi"" and M, indicated in Eq. (8.4) are carried out.* Thus [(J,""M\" J," M, | V| J/' M/ J) My')i
contains three terms of the form:

(Jy" My | sin 8y cos @1 | JIMY)Y? (J/'M, | sin 92 cos vy | Jo' MY')?

according to Eq. (8.2).

Next we carry out the summation over M,' as indicated by Eq. (8.3):

S (M sin 9 cos o | JM)? = 2 (J'M" | sin 8 sin o | J' M) = }1{
, <

[42(+) + 42 ()] (8.11a)
%I (J'"M" | cos ¢ | I'M')? = B2 (8.11b)
according to Eqs. (8.10).

*This may be verified by utilizing Eqs. (8.10).
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We may quite easily show that:

1 1
<M>=_- " ZM= -J((J+1D
2J+1 —v 3

by the use of which in conjunction with Eqs. {8.10) there results:

1 2
AA> = — —— T 4= - T s J" 1 5 (J ] — 1 8.12
<> =g s P WADSUI D RO =D @l
<B>= ';" <A> (8.12b)

Very straight forward substitution indeed of Egs. (8.12) into (8.11) and utilization of the results yields:

. 2
D UMM VMY Iy My = 2L

Mo 3 R (2J 4+ 1) QL + 1)
My My

DS VD + 08 (T =D+ 1) 8 (L7 +1)+J27 6 (J, 02 =11 (8.13a)

In order to obtain Eq. (8.4) we simply need to substitute the energy eigenvalues from Eq. (2.37a) and
carry out the summation over J,, the upper rotational states:

20+ DA+ 2o+ Ay 20+ 1Ay, — 2], A

Cp®s _ 2wt 1 { G+ Dh+D Uit Dy
3 RS @QLh+D)@L+1)

1
Ji(J: + 1) _ JiJe } (8.13)

2014y + 2(Js + ) Az 2J1A; + 2J24:
= — _2_’2?‘_22 ______1_. R {[ 24, -+ ._2141,]_1 + [2L4_1 — 2_‘42 :I—l
3 R¢ @L+1)@L+1) LL+1 Ji+1 Je Ji+1

24, zﬂ-1 [:zA1 2A2]“}
- ~ede o fedr | aAy 8.14
l:.fz-f' 1 Ji Je + J1 ( )

where the primes have been dropped, and it is now undérstood that the J, refer to the lower state.
If the two molecules are identical so that 41 = Az and w1 = w2 Eq. (8.14) becomes:

<E(2)> = _g_ _Iil JI(JI + 1) + J2(J2 + 1) (8.15)

RS (i+ ) (Nh+L+2)(h—Le—1D (1 — 2+ 1)

In order to consider the special case of the broadener in the ground state, let us refer to Section 5.3,
To begin with a comparison of Eq. (2.35a) (the rigid rotator eigenfunction) and Eq. (5.7) (the hydrogen-like
wave function) tells us that they differ only in the radial wave function R,;(r) of the latter. Thus, with the
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neglect of the matrix elements of r, the results of Section 5.3 should be equally applicable here. Let us then
rewrite Eq. (5.6) with the help of Eqs. (6.6) as:

4 1
Eﬁ [ Vioas 2 = ‘:; (y1as (1) + 2a° (1) + 4m” (1)]‘3—r052 (2) &gy

il

4 1
e (1) + 20 (1) = 2500 (VP 2106 (2) by
r 3

]

[Afria)FI O V8 [ (8.16)

Now for our present case we may apply Eq. (8.16) by, say, taking a rigid rotator in the ground state
as the perturber and another rigid rotator — not necessarily in the ground state — as the absorber. For
this case, we would obtain from Eqs. (8.13) and (8.16):

2 42 1 J 41 J2'!
crmso 2ot 1 et (o L )} e
3 1 agra1 o O MO N e v T Bm Eerzen)) @17

In passing, let us note a corresponding expression for the dipole-dipole interaction of two symmetric
top molecules* possessed of dipoles as given by Carroll!®:

<E®>—_ 2 H IA{ (Ji + 12 - K¢ [ (- K2 K7

'3 R 2 (a +~1)—€2j];; 1 (j;"i- e+ DU+ J:+2) + Jo(Jo + 1) (J1 +1)

T Ll ‘_._V_] L Keke Ji* — K¢
LRE+D U=+ D) LW+ DJ2+ D LE@L+ 1)

(J:+ 1) — K? Ky J? — K2

I ] ! ' — - 8.18
[(Jz +h@L+DL-N+) L+ 1) @2+ D+ Jz)]} ( )

8.4. ROTATIONAL RESONANCE AND THE CASE Ji = J: =0

A consideration of Eq. (8.15) tells us that a rotational resonance condition sets in for identical rotators
for | Jy = J: | = 1. Although the result is that the equation does not hold for this case, it certainly does
indicate that strong interactions can be expected for, say, | Ji — Ja| < 2 or3. Further Eq. (8.14) indicates
for dissimilar dipoles that an accidental rotational resonance condition comes about when Jo4: = (J, + 1)4;
or (Jo + 1)4, = Ji4;. Actually these cases should be treated as for two indistinguishable particles,f where
we are unable to state which of the two is excited, but only that the system of two contains one excited and
one unexcited molecule. Margenau"® considers this case as follows:

If we have the quantum numbers involved related by J; = J — 1 and Ja4s = (Ji + 1)A4, the same
energy results as for the case J; = J and (Js + 1)4; = Ji4, namely, J2(4:1 + A3)A;1’A; — note that for
identical rotators we simply let A4; = A4, which does not much affect our results. Now each state is twofold
degenerate due to this effect, so we now average over this degeneracy as we have previously averaged over

* The eigenfunctions and the energy eigenvalues for the Rymmetric top rotator have been given by Eq. (2.35b) and (2.37b)
regpectively.
f This leads us to an interaction dependence as 1/R%.  See supra, Chap. 7.

.
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the spatial degeneracy (given by M). As a result of this averaging process the singular terms cancel each
other out since they have opposite signs for the two cases and we cbtain:

il rar-r+1

G R @I —1p (8.19)

<E®>=

in place of Eq. (8.15).

Let us bring out a rather obvious but nonetheless important facet of Eq. (8.15). A perusal of the numer-
ator of this equation tells us that for | J; — Ja| > 2 the force averaged over all M between two similar
dipoles is repulsive, while for other values of | J; — Ji | this average force is attractive. In essence, we must
bar | J1 — Ja | = 1 so that the forces are attractive only for J; = Ja.

In actuality the resonance situation which exists here would lead one to ask whether under these condi-
tions there may not be a first order contribution to the energy. The answer, of course, is that there is, We
may recall that the manner of the earlier disappearance of the first order contribution was contingent on the
summation over the spatial degeneracy parameter M. With a two rotator system we now have an additional
degeneracy since the system has the same energy for (J5, J» + 1) and (J1 + 1, Jz) where J; = J;.

As usual the problem in degenerate perturbation theory requires a solution of:

| Vi —EP8;1=0 (8.20)

and we may quite conveniently divide the V', into four types:

WM, L+ L, M | VMY, T+ 1, My) (8.21a)
"+ 1L, M"LW'MY | VI I+ 1, My " My) (8.21b)
"M+ L, M VLY + 1, MY MY) (8.21c)
'+ L MM | V| MY, T+ 1, My) (8.21d)

where in all cases J, = Ji.
The matrix elements given by Eqs. (8.21a) and (8.21b) are the type with which we have previously dealt,

and these may be expected to vanish. In addition, all ¥;; vanish.
In the manner of Section 8.3 we may then obtain for the remaining elements:

w 1
R@JI+1)@J+3)

WM, W+ LM |V + L, MU L'MyY) =

A=2[J+M"+1D T ~-M"+1)T+M"+1)J - M+ D" (M"M) § (My"My)
+4 I -M"+20-M"+1)J-M")JT-M'+DI'"s M\ M -1)8 (MY, My + 1)
FHT+M+2T+M' +1)T+M")J+ M+ D" (M/M +1)8 (MM — 1)}

(8.22)
After a fashion, which we shall detail,* the fact that ¥;; = 0 requires that the mean value of E be zero,
* Se0 infra, Sec. 8.10,

A=
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and the root mean square value of E may be found as:

we 5z o (2N J+1 # '
< ET <3> @J+1) @QJ+ 3" R (8.23)

Margenau''® has considered the special resonance case J1 = 0, J; = 1. Leaving out the fixed J; from
the matrix element symbol and noting that M, = M’ = 0 leads to:

2
(OM;" | V| M{0) = 3—%3 [— 26 (M,0) 6 (M/0) + 6 (M, — 1) 6 (M, — 1)

+ 6 (M,'1) § (My'1)] (8.24)
from Eq. (8.22).

Eq. (8.24) yields the secular determinant:

— EW 1/3a 0 0 0 0
1/3a —E® 0 0 0 0
0 0 — EW — 2/3a 0 0
0 0 — 2/3a —E® 0 0 =0
0 0 0 0 — Ew 1/3a
0 ()] 0 0 1/3a — Em
of solution:
Eo = 4 L# , 28 (8.25)
3 R 3 R

In some instances, the perturbations may become of the order of magnitude of the unperturbed energies
or of the differences of these unperturbed energies. In such cases, ordinary perturbation methods fail and
some other approach such as the Variation Method is called for.

Let us suppose we are, for some reason or other, possessed of the Hamiltonian H. We now choose a
go-called variation function ¢ — it is only required that ¢ behave more or less as a wave {unction should —
and we maintain that, if E, is the lowest energy eigenvalue of H, the following is true.*

E, < feHpdr = E (8.26)

where ¢ has been supposed real, so that 0= ¢
Now let us be a bit more specific and suppose H to be H, + V, where V is our familiar interaction.
Next we expand the variation function in terms of the unperturbed eigenfunctiouns of our system:

¢ = Zay; (8.27)

and we recall that | a; |2 will be the probability that the system is in the state ¢,

* This follows directly from (1) the Schrodinger equation Hyyn = Enyne—> [YnHyndr = Enj; (2) ¢n = Zapipi and
@) E<E<...<En<...

.
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Since the right side of Eq. (8.26) is always greater than the desired value E,, minimization of this integral
is called for. This may be accomplished as follows:

2 7 Hz
g = Lollpdr _ 5570 (8.28)
f‘pQOdT ?cl'cjaij
where:
H; = [V;HYdr and 6;; = [Y,dr
or:
E.EC,CJ‘az'j = EC,'CJ'H,‘J' (8.29)
5 i

It should be quite apparent that the only entities in Eq. (8.29) which may be adjusted to minimize F
are the c;. We proceed to differentiate with respect to each c;:
Ly

8c,, +f

e+ E 2 (Seiepy) = 2 (Sewc;Hy)) (8.30)
dc, i ]

and in order for a minimum to be attained, it appears necessary that SE _ 0 for each ¢;. All of which

60]'
leads to:
E'C,'(Hik - aikE) = 0fork = 1,2, e .. (8-31)
which set of equations in turn yields the secular determinant:
| Hy — 83E | = 0 (8.32)
It is also true that:
Hy = Eg%; + Va—|Vy + (EL — E)ou| = 0 (8.33)

by definition.
Margenau'® utilized this variational perturbation method to treat the resonance case J; = J; = 0.
As our variation function we take:

¥ = cor + ar + afs + oy (8-34)

where ¥, = Y7, (AWr,(2) = Yoo(1)¥(2) is the ground state function and the remaining ¢, are those
eigenfunctions with which this ground state function may combine under the influence of V. Of course:

V1 = Y1o(1)¥e(2)5 ¥a = Yia(Dyu(@) (8.35)

¥s = Yu(y1-1(2)
The E,° required in Eq. (8.33) may be obtained from Eq. (2.37a) as:

Eoo - 0; E;“ _ E)o — E30 = Q¢ = _z_h;. (8-36)
From Eqs. (8.10) we may obtain:
Vg = — —i—a; Ve = Vg = — —;La; Vie = Vi (8.37)

u?,

where a = —
R
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As a consequence Eq. (8.33) takes the foi.n.

- E® —2/3a —1/3a —~1/3a
—2/3a 2¢ — E® 0 0
~1/3a 0 2¢ — EO 0 =0 (838)
~1/3a 0 0 2¢ — E®™
whose solution is:
2 /
E® = 1‘_[1 — (1 + 2‘”2)1 2] (8.39)
I 3KR®

Eq. (8.39) tells us the first order interaction energy for two like dipole linear rotators for the case
Ji = J» = 0. Forlarge R, the radical in this equation may be expanded with ihe result:

wil

EV = — 3HRS (8.40)
and for small R Eq. (8.39) becomes:
EO = ~ __2_ 1/2_'_‘1 (8 41)
3/ B ’

One can hardly help but note the comparison between Eq. (8.21b) and the equation for the classical

2
potential, -—2—1%3 , of two dipoles aligned along R. The interaction law change from R™® to R™% is also rather

striking.
Let us now sketch a resonance development of London'® in just enough detail so thai the results which
we shall later utilize will be somewhat intelligible. This author used what we might as well call an order-of-

magnitude technique to arrive at the secular determinant:
| Vain, + (Exf® — En® — EO) o] = 0 (8.42)

We shall be able to define the new symbols E; ™ and Ey,(® after another step in the development.

London considered only the eigenfunction 1//,);{' ¢_IZ' and the thirteen eigenfunctions with which this
eigenfunction may combine, as always, under the influence of V. The possible combinations are governed by
the selection rules AJ; = +1, AJo = +1,AM; = —AM, = +1,0. He did not consider the twelve func-
tions with which each of these twelve functions could combine, etc., etc., and as a consequence as Margenau
noted his “ . . . expression does not yield the correct positions of the roots of the complete secular equation,
but may allow in many cases a useful approximation, for it has the same ‘root mean square’ as the true

solution,”!1®
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Under these restrictions then, we shall utilize the eigenfunctions:

My, M
uy =y, ¥y,

u, = ¢’j{:i-1 ﬁfll u; = '/’.1/‘{;-1 ¢Z’_;

wm=vnn v b T R Tl S

ug = Yo vt ) uy = o )

u = %M.l—x '1’.];!;-1 up = l/’%l—x '1«%11

ws = Yo Vna ¢ T R N S S W

w = VS g we = WIS (543

from which we may define Ey,'” and Ey, /.

Ey® is in all cases the zeroth-order energy going with u, as given by Eq. (2.37a). Ey,'® are the
zeroth-order energies going with uy, u,, . . .., uy as again given by Eq. (2.37a). We may note that the
energies associated with u,, u,, u;, are the same; as are those associated with u,, u, u,, and so forth. Thus:

E1 = En(o) - Ero(ﬂ) = (.]1 -+ Jz + 2)7

. M

E = E.® — Ex® = — (J, + kg
2 Ty T ( 1 Jz) I (8. )

K

Ey = Ey 9 — Er @ = (i — b+ 1) T

E, = E9 — Ex9 = (Jy — J: + 1)%

A secular determinant of precisely the form Eq. (8.41) wherein the 2¢ are now replaced by the E, from
Eq. (8.42) results. In addition, we let }°), = }',, and from this secular determinant, the equation:

2 2
REw = 00y W g e (8.49)
Ev — FE EVY — F, FEVW - F, E© - FE,
follows, where:

2
:}15 =2+ Vo + Fod? (8.46)

For the resonance case (J; > 0, J; > 0, 1 = J; + 1) Eq. (8.45) becomes:

RED = & L & o & | af (8.47)

Ev — E  EY —~ F  EO - E E

-
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For large Rand | E? | < | E; |:

2 2 2
RS (EMDy2 (fﬂ. ay gi)E(n —al =0
(E7) + E, + E2+ E, as

whose solution is:

1 (12 aZ a2 aZ a2 a2 2 '
E® = — [—<—£+-2 +ri> i\/<—‘+-2-+—3-> + wm]
236 E1 Ez Es El E2 ﬁ8 !

1 012 (122 (132) 1 ay
= - 2 - —_ 4 — 8-4‘8
2 (E1 + E, t E;/ R R ( )

Eq. (8.18) gives the first-order perturbation encrgy for the rotational resonance case. We note the

comparison with Eq. (8.25).

8.5. INTERACTION BETWEEN A DEFORMABLE AND A RICGID DIPOLE (INDUCTION EFFECT)*

Let us next consider the interaction between two molecular models, one a rigid dipole rotator and the
other a deformable dipole. Now by deformable, we mean that the latter dipole may undergo distorting
vibrations resulting in its possession of vibrational energy levels and to it also we attribute electronic energy
levels. In this case, we may carry through the treatment in exactly the manner of Sec. 8.3 as far as Eq. (8.13).
To this point in the development, the new physical conditions introduce no changes. In Eq. (8.13) the
subseript 1 now indicates the deformable dipole while the subscript 2 represents the rigid dipole. From this
point, it ix the summation over J," and Jy', as indicated in Eq. (8.3), which must be modified.

The summation over J,' remains unchanged since the rigid dipole possesses only rotational energy, but
now we must not only sum over the upper rotational states of dipole 2 (for the ground electronic vibration
state) but also over all upper electronic-vibration-rotation states. The grand sum which results may be
broken up into two sums, (1) the sum over all J," for the electronic-vibration ground state and (2) the sum
over the remaining upper states for the deformable dipole. Both of these sums are to be combined, of course,
with the sum over the rotational levels of the rigid dipole. Subsum (1) corresponds precisely with Eq. (8.14).1
Subsum (2), on the other hand takes the form:

Weelz T2 (8.49)

gy o 28 S Olen B (U + 105 U + 1 4 S/ U4 = )
3 RSy |E, — Eg, + Epp — Ep] Q1" + 1)

where now K, is a quantum number aggregate representing the upper state electronic and vibrational

quantum numbers.

8.6. INTERACTION BETWEEN A DEFORMABLE ROTATOR AND AN ISOTROPIC HARMONIC OSCILLATOR

We now take as our absorber an isotropic, three dimensional, harmonic oscillator and as our perturber

a deformable rotator in the ground state. The eigenfunction describing such an oscillator has been given

* f. references 157, 177, 179, and 180,
t Except that now u, will be a function of the electronic vibration level involved.

o



240

by Eq. (2.30c) in spherical polar coordinates. Although this form of the eigenfunction is the most descriptive,
we shall find that it will be more convenient here to use the rectangular coordinate form, namely:

3
Y(vww,) = I H,, (8'x) exp [—B/2 x?] (8.50)
tm]

mow
where 8 = — .

In order to simplify our considerations, let us suppose that v,” = 1/’ = v;”’. Eq. (8.15) may be utilized
in order to write Eq. (8.3) as:*

[ (o0 | V | o/va’vs’) [2] (O] er|A) |2

- E, - E, + B, — B @31
where V is given by V = 7:;[2: - x—yl
Using the recursion formula for Hermite polynomials
EH, (§) = $ Hyy (§) + 2n Hoy (8)
we may show that, for the harmonic oscillator:
l_),_,2__—;- ! forv = v + 1
TSI ECT T v = -1 (8.52)

0 forv' = v’ + 1

Quite obviously then, the three vibrational quantum numbers in the eigenfunction of Eq. (8.50) may
only individually change by == 1. The states with which y(v;"'»s"’v;’’) may combine under the influence of ¥’
are listed in Table (8.1). The matrix elements V., resulting from these combinations together with the
corresponding values of E, — F,+} are also given in the table.

R

¥(v'nn'vy) Ey — Ey - Voo
Yo" + Le"\0") b - 28)~13( + 1)1/
v(on" + L) h» - (28)" 3@ + N
v w0 + 1) hy 2(26)=12(v, + 1)173
v — Lo 0") — hy - (28)~12(p)1/2
v — Lu") — b — (28)"1A(m)172
v " — 1) ~ hs 2(28) 1A'

Table 8.1

* Eq. (2.30c) tells us that the special case (rigid rotator) considered in obtaining Eq. (8.16) could be extended to the rotator-
vibrator, or to the rotator-vibrator possessing also a hydrogen like electronic eigenfunction, etc.
1 See supra, Eq. (2.33a) for the oscillator energics.
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Let us note the threefold degeneracy* that exists in the final states of the same energy in Table (8.1)—
at least for our purposes bere. This will require our dividing by three when taking the sum indicated in
Eq. (8.51).

We may now utilize the results of Table (8.1) in Eq. (8.51) to obtain:

<E®> = 1 L. Z{"‘+l+”’+l+4(v’+l)+ 111+02+4v3} 1OV 4)p

R 2maw — E+ by E, —Ey—k
et Ko v+ 1 v } (8.53a)
=__ "= OlerlA) |
R°mw22{EA—Eo+hy+EA-—Eo+hv [ @eria)]
since vlll _ vz" — va".

If E, — Ei is large compared to kv Eq. (8.53a) may be rewritten as:

oy - e’]fw(2v+ 1) [ (0]er]A)f?
<EP> = 5 Z T
1 (O0]er|a)f (8.53b)
RG mw’ Z A Eo

where E, = hw(v 4+ 3) according to Eq. (2.33a).

This is, of course, the dipole-dipole interaction only. Utilizing the same principles which have arisen
in this section, Margenau''® obtained for the interaction between two threefold harmonic oscillators in the
ground state, the following:

3 othy 15 od(hw)? 315 oat(hy)?

(8.54)
4 R* 4 eR® 32 e'RY

where « is the polarizability of either oscillator. The first term represents the dipole-dipole interaction, the
second the dipole-quadrapole, and the third the quadrapole-quadrapole.

8.7. BROADENING BY MOLECULES WITH NO PERMANENT POLES (DISPERSION EFFECT)

Margenau' initiated the first attack on the Theory of Molecular Broadening in 1936. Of the many
possible special cases of this phenomenon which could have been considered, he chose to investigate the case
of broadening by foreign gases which possess no permanent poles since Watson and Hull'*! had previously
obtained experimental data on this case.

Watson and Hull had investigated the broadening of AIH by H;, BeO by Oz, CN by N, and MgH by H,.t
These authors discussed the firat two of these combinations in detail although we shall neglect their Be()
by O, results. We shall neglect these latter results since instead of yielding the phenomenon with which we
shall be concerned, they simply require explanation (justified though it may be) as to why we do not obtain
what we are looking for. It does not appear very straightforward to base our theoretical considerations on
experimental results which we would have obtained had the situation been different.

* Actually each level is (v + 1) (v + 2) -fold degenerate in general,
t We may recall, that in general, homonuclear diatomic molecules (H3, etc. ) are possessed of no permanent or vibration
induced electric dipole moments,
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The AlH lines broadened by H, in the band at 4260A were studied for values of J < 22 and ranging
from Q (6) to J(22). Pressures of5.7,10.7 and 14.7 atmospheres were utilized. To begin with no J dependence
in line width was observed. A line shift of 0.051 cm.™! = 50, per atmosphere H; pressure and a linear line
width increase of 0.24 = 0.03 cm.”™! per atmosphere were obtained. A comparison of these results with
those for the electronic resonance lines of Hg and Na shows a sufficient correspondence to indicate that, for
the type of broadening under consideration, the rotation-vibration lines may be expected to be broadened
and shifted by about the same amount as the electronic lines. All of which led Margenau to the investigation
to which we now direct our attention.

Let us label the states of an absorber by K with the state in which we now find this absorber being
designated k. The broadener states we label A with the lowest state 0. Now from Eq. (8.16) we may obtain
the perturbation on the energy of the absorber averaged over all orientations of the absorber as:

v

<E(2)> = _ _2__ ! ‘ (er)OA ‘2 ! (V)ch |2 (8.55)
SR‘ Ax EA"'E()‘*'E“_E],

We have stipulated that E, is the lowest energy of the perturber. This means that E, — E, will always
be positive. In addition we have not allowed this perturber a permanent dipole moment. This means,
according to our considerations of Section 1, that no pure rotational transitions, which amount to the lowest
energy transitions, are possible. Thus, according to our rule of thumb of Section 1 the 10 volt vibrational
transitions are the lowest energy allowed.

On the other hand, E, — E;, may be positive or negative. This means that <E® > may be greater
than or less than zero so that the spectral line may exhibit either a violet or a red asymmetry.

Now where we simply have dealt with a set of relatively widely spaced electronic levels in our mona-
tomic considerations, we now deal with a modification of this situation. We still have the set of electronic
levels, but on each of these is superposed a set of more closely spaced vibrationa! levels, and, in turn, on each
of these vibrational levels is superposed a set of still more closely spaced rotational levels. When we are
considering the visible and ultra-violet portion of the spectrum (but certainly not when we are considering
the infrared) we may, as an approximation, consider only the electronic contributions to E; ~ E, — they
surely constitute the largest ones — and merely let the rotation-vibration levels superposed upon them
amount to degeneracies accounted for by a summation in Eq. (8.55). It follows that the result will closely
correspond to that for monatomic molecules, To be sure, this could only be expected to give us results for
electronic band spectra, but it does tend to indicate that we should not expect too heavy a broadening or shift
dependence on rotational or vibrational quantum numbers under the present physical conditions.

In order to consider the possible effect of molecular rotation let us approximate our absorber by a rigid
rotator of dipole moment u. Then Eq. (8.2) takes the form Eq. (8.17):

g . J+1 U
Y 8.1
<E;»> 3 R62J+1{§: l(er)OAl( _E0—2(]+1)B+EA“Eo+2JB)} eI

where, as usual, B = h*/8x%I.
Now I is usually of the order of 107%, and, with k of the order of 10™% we see that B will be small
compared to E, — E; when the perturber has no permanent dipole. When B is neglected Eq. (8.5a) becomes:

] (er Joa ]2 ap’
<E® > = il 8.562)
3 R Z E~E K (8.56s
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If the dipole moment s = 107 the perturbation given by Eq. (8.5b) is about 1/20 of that for the
electronic case. Now let us write Eq. (8.17) as:

. 2w 1 NV . J+1 J
2 = - B N % R
<E;®> 3 R @) & | (er)on © _E)[l_z(JH)B] (E _E)I:H 2JB J
. ’ EA— Eo i * EA"‘E
et 1 [J+l) 2(J+DB | 4(J+17B __.}+J{1_ 2B Al +}]
RS (2J+1) ( {H E,—E, (E,—Ey* + Ex—Ey (E,—Ey)
o 2B 42+ J+ 1B ] \
=% 14 . ~ 8.56b
Re[ Y EoE T T E—Er (8.36b)

It is apparent from Eq. (8.56b) that the portion of <E,®> which depends on J is very small due to
the appearance of B? in the numerator and (E, — E,)? in the denominator involved.

Margenau carried out his considerations of the effect of molecular vibrations in an analogous manner.
In this case we obtain from Eq. (8.53b):

<E®> =3 &5 (8.57)*
mw?Ré

From Egq. (8.57) we may note that a more marked dependence on the vibrational quantum number is
exhibited than on the rotational quantum number as given by Eq. (8.17). On the other hand the perturba-
tion given by Eq. (8.17) is about five times that giver by Eq. (8.57).

On the basis of these investigations, then Margenau concluded that “‘within obtainable experimental
accuracy” all rotation-vibration lines associated with the same electronic transition should show broadening
and shift of about the same degree when the broadening agent is a non-polar molecule. In addition these
lines should be affected by foreign perturbers almost in the manner of the corresponding monatomic lines
under similar circumstances.

As Watson'*® has noted “dispersion forces™ — the type considered — also appear to predominate in the
self-broadening of non-polar molecular lines. Were the normal resonance forces between like monatomic
molecules present, we would not normally expect this to be the case, but the closely spaced rotational levels
of the polyatomic molecule render this predominance reasonable. As we have noted, the rotational levels
specified by, say, just J are comparatively closely spaced energywise. As a consequence a Maxwell-
Boltzmann temperature distribution of molecules over these levels will not lead to the preferential population
of the monatomic case, and they will be more equally divided among many levels. On the other hand the
allowed J change in transition is generally limited to =1 or 0 so that the probability of energy exchange with
the resultant degeneracy is severely restricted. In toto, then, this resonance effect would not appear to be
primarily responsible for self-broadening, and we may safely look to these dispersion forces as broadening
agents for non-polar molecules. This conclusion had been verified for the case of methane by Childs,'
Dennison and Ingram,” and Vedder and Mecke,!s for atmospheric pressure and above, and for the case of
acetylene by Hedfield and Mecke,’® Herzberg and Spinks, Lochte-Holtgreven and Eastweod,’® and
MecKellar and Bradley' for atmospheric pressure.

E,

e!
* Margenau obtained — R
mw
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We have broadened molecular lines by non-polar molecules, and it would now appear a logical next step
to broaden these lines by polar molecules. Let us then consider first the work of Margenau and Watson on
this phenomenon.

8.8. BROADENING BY LINEAR DIPOLE MOLECULES

Before turning to the qualitative considerations of Margenau and Watson!”? in this regard, we consider
briefly an earlier work of London'®® in which this author contributed much toward the systematizing of
inter-molecular forces.

In what might be considered the natural course of events we have encountered the ‘‘Directional Effect”
of Keesom,?® the “‘Static Induction Effect” of Debye, and the “Dispersion Effect” of London in Sections 8.3,
8.5, and 8.7 respectively. London, on the other hand, began his considerations by the introduction of these
effects. He started from Eq. (5.4) and considered the contribution of this equation to consist of a sum of

terms of the form:
Ekl(z) = Ekl_(") + Ekl\rp) + Ekl(m + Ekl(W)

(rr)

In this equation Ej;'™ is associated with small “‘jumps” or quantum number changes on the part of
both interacting molecules. E;™ and E,;” arise due to a small jump by one molecule and a large jump
by the other, and, finally, E;;*” results from large jumps by both.

E;'% corresponds to the Dispersion Effect and is present to a greater or lesser extent for all molecules.
The contribution is due to the *“kurzperiodischen Storungen’ arising from the motion of the inner electrons.
The potential arising from this is of the form —1 ‘RS, —1,R® and higher inverse powers of R.

E'" is the contribution of the Directional Effect of Section 8.3 and arises from the interactions of the
dipoles (or quadrapoles) at various relative oricntations. We have seen the manner in which this effect
depends on o= 1/R® for dipoles at large distances and — 1/R? for the lowest state or, in the case of the
suppression of degeneracy, in the metastable state at short distances (Sec. 8.4). For quadrapoles, a
corresponding + 1,/R'® and — 1 R® dependence results.

E9) and E™ result from the Static Induction Effect, and, as we have noted, depend on — 1/R* or
—1/R® for dipoles or quadrapoles respectively. London describes this effect as ‘‘due to the charge distribu-
tion of the entire molecules.”

It is to one of these three effects than that Margenau and Watson'? looked for an explanation of the
broadening in linear dipole molecules such as HCN possessed of relatively large (>10~'%) dipole moments.
They believed the principal cause of broadening to be the directional effect and we might enumerate the
spectral prognostications toward which such an assumption leads.

To begin with we must hypothesize the unpolarizable (rigid) dipoles of Section (8.3) and we recall from
Sections (8.3) and (8.4) that (1) the intermolecular forces are relatively weak except when the near resonance
condition. | Ji — Ja | < 2 or 3, sets in and (2) the lowest rotational state is most strongly influenced by other
molecules in the lowest or neighboring states.*

The lower state J," we take as other than the lowest rotational state so that we can concern ourselves
with (1). As has been mentioned, the rotational levels lie sufficiently close together so that a thermal dis-
tribution over them may be expected. Suppose J,”’ to designate a level near the maximum of this thermal
distribution. Then a much greater number of perturbers can be expected to fulfill the condition

* Cf., for example, supra, Eqs. (8.21).
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| Ji" — Ji""] < 2 or3 than would be the case were the J,” level to be found toward the wings of this
thermal distribution. Since the upper level will also enter into the line broadening one cannot say more as
yet than that those most intense lines arising from J levels near the maximum of the thermal distribution
should be broadened more than the remainder of the lines of the band.

In regard to (2) this indicates that a greater broadening of the line arising from the lowest rotational
level is to be expected, but only under certain conditions. At normal temperatures, the thermal distribution
ghould not populate levels lying near J,”” = 0 very highly so that the effect may not be very pronounced.
As the temperature is lowered, however, these low level populations will increase and we should expect to
see an increase in the broadening of the line with J,”" = 0 over neighboring spectral lines. It might be noted
also that due to ‘‘greater flexibility downward™ a violet asymmetry in this line may be expected.

We now devote ourselves to Margenau and Warren’s more quantitative consideration of the broadening

effected by dipole interactions.

89. INTERACTIONS BETWEEN SYMMETRICAL TOP DIPOLE MOLECULES

For our two interacting molecules we choose two identical symmetrical rotators each possessed of a
permanent electric dipole mement u oriented along the molecular figure axis. The interaction potential
between the two rotators is again given by Eq. (8.2) where now y; = p» = u. The eigenfunctions for this
system are given, according to Eq. (2.35b), by:

Yootk = NUGKMYNLKM,) 05,001, (91) Opganr, (9g)e Mo tMrert Kot K (8.58)

for sufficient separation R. Eq. (8.2) tells us that V is not dependent on the Eulerian angle x so that
K, = K/ and Ky = K, under the aegis of V, and the matrix of }'is diagonal in K, and K, as a consequence.
Now in obtaining the matrix elements of }’, the integrations over p, and x, may be carried out immedi-
ately to yield:
(Jl,IKI’,AIII,J2’IK2’IA1211 I ’/’ I JII,KI"MII‘Iz,lelle,)

2

= — ]‘;‘ 1\:11‘ . A\"‘!," JVM; ]VM,' {327!" Il(Jl"Kngln) Il(Janz”Alz”) 1] (4"[{4‘[1”) 8 (1‘12,]@{2")
—8rL(J/'K{"M,") I,(J,"Ky'"My'") & (MY, My — 1) 6 (MY AL + 1)
—8m ()K" M) L(J K" My") 6 (MY, My” + 1) § (M, My — 1)) (8.59a)
where:
L1 1
II(J”K”AM”) = f(‘OS 0(’2J'K"M” sin 9dd = 2 f (1 - 2x) ()EJ“K M (x)dx (8.59b)
0 0
* 1
IQ(J”K’IA‘I”) = f sin ‘99J“K"A{"9J"K"'M"_.] sin 9dd = 4 _r.il’l 2(1 bt x)' 29]'*}("‘”“ (x)e_/-'x"‘M"__l (x)dx
’ ’ (8.59c)
I;;(JHK”AI") = f sin 00./"](".\["0./'K".M"#—l sin ddd = I2(J”K”,1‘[" + 1) (8-59d)
0
and

I, has been evaluated by Reiche and Rademacher'®® ' — among others — and is given by:
KIIMII

NMOLJ'K'My= ——
( 1 ) YIS Y

(8.60a)
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Margenau and Warren calculated I, by the reduction method of Reiche and Rademacher with the result:

+ K’ [(JII — M + 1) (J// + M//)]I/Z

NM )NM" — 1) L(J"K"M") = a7 + 1)

(8.60b)

where the minus sign is to be taken if the numerically greater of K or M is positive while for the opposite
case or if K = — M the positive sign is to be taken.
Egs. (8.50) may now be substituted into Eq. (8.59a) to obtain the result:

(Ml(,MZ'l l V( M]_’le) = .’_‘f KIKZ
R L(Ji+ DR+ 1)

£y — MY+ 1) (Ji+ M) (o = M) (a4 M + D26 (MY, MY ~ 1) § (M, My + 1)
3+ M = 1) (i~ M) (Ja — My + 1) (Jo+ M) 28 (MY, My + 1) 5 (MY, M, — 1)} (8.61)

{ -—2M1”M2” 5 (ML’MLH) 5 (leMgll)

From Eq. (8.61) it is apparent that we are dealing with a somewhat different situation than had previ-
ously arisen in our molecular model considerations in that the matrix elements of V' = H’ over the system
do not disappear. As a consequence the first-order perturbation energy does not disappear. In addition,
the problem is one of degenerate perturbation theory in which the degeneracy in M is partially removed in
first order.* Our next step is then the solution of the secular determinant | V;; — E® §;; [ = 0 of the form
Table (7.3). Since J and K are fixed and since M takes on all values from —J to +J, this determinant will
possess (2J1 + 1) (2J2 + 1) rows and columns. This determinant is given in Table (8.2).

M [(=J) ) CRhAD Gh) LD L) s (=2 (W=D () =D () ()
MMy MY (=J2) (“h+)) (T (HJe1+2) (R+D) (0 ... ) (=1 (i~2) (Jn» (i=1) (J»
(=J0) (~J3) E-~-H
(~IX—Jo+1) E-H ~H
(=Ji+1)(=T2) -H E-H
(=J)(~Jat2) E-H -H 0
(D T+ 1) -H E-H -H
(~Ji+2)(~J5) 0 -H E-H
Increasing sized
blocks symmetric =
about the secondary diagonal
(J:—=2)(J2) E-H -H 0
(-DU-n | —-H E-~H -H
(I(s—2) 0 ~-H E-H
(Ji—1){J1) E-H -H
(J)(Js~1) ~H E-H
(JoU») E~H

Table 8.2. The secular determinant | Es;;—H,,’| = 0for ¥ = H’ as given by Eq. (8.61). The blocks increase to a maximum
size of (2J; -+ 1) by (2J: + 1) for the (2J3 + 1)-st block for J; > J.

* We note no dependence of the unperturbed energies as given by Eq. (2.37h) on M while the energy dependence in first
order may be seen from Eqs. (4.147) and (8.61),

-
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A consideration of Table (8.2) tells us that the determinant has broken into blocks, with identical blocks
symmetrical about the secondary diagonal. This immediately tells us that every root of this determinant
will be a double root.

A little consideration of the situation indicates that a general equation describing the level splitting due
to this interaction is not to be found, but an idea as to the maximum splitting may be obtained, and the
example of a special case may be presented.

We may write down from Eq. (8.61) the double root which lies at either end of the principal diagonal
and where J; = M, and J; = M,.

2 KiK;

E(l' =3 et e e ’
B G+DtD (8.62)

If we recall the linear Stark effect,

Ew = 5 KM (8.63a)
JUJ+ 1)
it is interesting to note the close resemblance which its maximum (J = M),
K
EM = 4E 8.63b)
B = (

bears to our result Eq. (8.62).

Fig. (8.1) illustrates the level splitting with the rotator separation R and the magnetic quantum number
M for the special case J1 = K; = 2, J;' = Ky’ = 1 for the upperstateand Ji"” = Ky = L J, = K/’ =1
for the lower state.

Let us finally remark that since K = 0 for a spherical top rotator, the matrix elements of ¥ in Eq. (8.61)
would all be zero so that the effect considered would not take place.

Insofar as second order effects are concerned, we certainly are aware that they will depend on the inverse
sixth power of the molecular separation. In addition Margenau and Warren felt that for finding those
regions in which the first order perturbations predominate, London’s second order results for diatomic
molecules should be sufficient. Under these assumptions a limiting range of about 7A for the predominance
of the forces which we have considered was imposed by these authors.

8.10. THE BROADENING AND SHIFT DUE TO THE SYMMETRICAL TOP DIPOLE INTERACTION

'The secular determinant of Table (8.2) will have (2J1 + 1) (2J: + 1) roots which we may designate
by e, e, . . ., and, for convenience, let these roots be given in units of:

L KiK.
R J(i+ DA+ 1)

the “coeflicient™ in Eq. (8.61). The secular determinant leads to the secular equation possessed of these
roots so we may write,

P Vi — &) = e — &) = f—a" b - .+ x=0 (8.64)
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and let us recall the relations which exist among the roots and coefficients of a polynomial and which were
discussed in connection with Eq. (7.9). These relations first lead us to:

a = E € = E V,',' (8.658)

Eq. (8.65a) may be evaluated specifically using Eq. (8.61) as:

J1 Js
a= X Z 2MM =0 (8.65h)

Mi=—J1 Mi=—J2
Thus, the weighted mean of the energy perturbation is zero whieh in turn means that we would expect
no shift of the spectral line, a situation which also arises in connection with the R™® interaction in atomic
resonance broadening.
As a measure of the broadening of the line due to this interaction, let us now find the root mean square
spread of the perturbed energy levels. The coefficient b is given by:
b= EA (Vi Vij = Vi)

>

=32 ZVV;—3Z V-2V (8.66a)
L t >7
or by:
b=2Zee=14Z¢ 2~} el = —§Zef (8.66b)
t> L) 7 [ 1

by virtue of Eq. (8.65). The substitution for the V', in Eq. (8.66a) from Eq. (8.61) results in:

b = 2 2 z AI]_,IAIL)HAM['AMz/ — 2 E M1I12M2I/2

MMy M2"Me MM
-1 El (J2=M"2+ L+ M) (J = M2+ Lo = M) =0—3§ Jiy(J1+1) QJi+1) Jo(Jo+1) L+1)
My Mo

- %[(-]12+ J@ehL+D -y L+ D@L+ 1)”(.]22 + J2) @+ 1)
3 (o + D@2+ D)

-+ Deh+ DU+ @+ 1) (8.67)

Egs. (8.66b) and (8.67) lead to the result:

<€,2>l 2

[—in(Jl + 1) L + 1)]"2 (8.68a)

which in more normal energy units is:

<(EOR >t =(‘2‘)w e D (8.68b)
3 R |Ji(J: + 1) Jo(Jy + D]

In Chapter 7 it was shown that when a resonance interaction, resulting from a potential of the form

E® = + B/R
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occurs, the statistical theory decrees an approximate half-width.

et ey
3 h

Margenau and Warren make the point that while it would be “indefensible to identify the splitting
pattern . . . (Sec. 8) . . . with any pattern having the same standard deviation . . . "1?* a reasonable approxi.
mation to the half width arising from these considerations may surely be expected if we equate B to

(_2_)‘/” . | KiKa |
3 g [y + 1) Jo(J2 + 1)]v2

There then results:
se P KK N
W(Jy + 1) Jo(J2 + D)2

(8.69)

It is true, of course, that we have here found the level width while we are really desirous of the spectral
line width. The level here (J1K1J:K:) would have to be considered in conjunction with another possible
level (J; + 1, 0; K; & 1, 0; J: K). One may perhaps consider the K and J; appearing in Eq. (8.69) as the
mean of the quantum numbers for the two states.

We might conclude by noting that the effect as given by Eq. (8.69) is around 20 times as weak as the
self-broadening effect in monatomic resonance lines.

The results of this theory were born out order of magnitudewise by Cornell’s results.”* In this author’s
investigations of /VH; (a symmetric rotator possessed of a dipole) he obtained average widths of 1.45 cm.™
for the 7920A band and 0.81 em.™! for the 10230A. Taking the weighted mean of | K:K; | [J,(J; + 1)-

2
Ja(Je + 1)]-172as 1,2 the theory yields § = % w2 —’i— N = 1.5 cm.™ for a pressure of one atmosphere.

8.11. BROADENING BY THE LINEAR DIPOLE MOLECULE HCN

The first attempt at a rigorous theoretical interpretation of the self broadening of the absorption lines
of a linear dipole molecule was carried out by Lindholm'® for the HCN molecule. This investigator found
that, as he put it, the Directional Effect (~R-*) alone,* was not sufficient to account for the strong,
J-dependent broadening observed, so that he considered also the Resonance Effect (~R-%) in conjunction
with the former. As we have remarked! what Lindholm called the rotational Resonance Effect is in actual-
ity a special case of the Directional Effect. Let us keep this fact in mind, but for convenience of consideration
we shall use the Lindholm nomenclature for the two interaction relations (R-3 and R—¢) in this section.

In essence Lindholm uses the energy perturbations due to the Directional and Resonance Effects within
the framework of the Weisskopf theory of Interruption Broadening to determine the broadening of the
HCN lines in a manner which we now consider.

According to Eq. (7.53) the balf width of the lines will be given by:

= p*<v>N

* See supra, Sec. 8.8.
1 See supra, Sec. 8.8.
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for a homogeneous gas. For a heterogeneous gas containing IV; molecules with optical collision diameters p;,

N, with diameters p;, etc.
8 = <v>ZNyp? (8.70)
+

if all molecules are of the same mass, thus allowing a common <v>*. Let us next consider the neceasity
for introducing Eq. (7.70).

From Lindholm’s experimental results, it is quite apparent that a marked dependence on J is present
in the line width. In the Weisskopf theory, this can only come about through some variation in /N and »
with J; (the absorber J value) and J; (the perturber J value). Thus, we hypothesize a dependence of p on J,
and J; which a little consideration immediately bears out. To begin with a frequency perturbation Av=5b/R*
(which is brought about by the Directional Effect | J; — J: | # 1) leads to an optical collision diameter:

o= («“ff_ b )"‘ (69
4 <v>
On the other hand, a frequency perturbation Av = +B/R® (which may arise from the Resonance
Effect | J1 — Jz | = 1) occasions an optical collision diameter:
p = ( ixB >‘/’ (7.54b")
<v>

This then is at least a part of the general manner in which p may depend on J; and Jy, and let us now
specificize this into usefulness. Lindholm dealt only with the P-Branches (AJ = —1) of the two HCN
bands which he considered. Insofat as the vibrational quantum numbers involved are concerned v," = ;" =0.
We now let:

A=J) - N (8.71a)
so that:
' =N =Rh"=-U"-1)=4a+1 (8.71b)

for the upper state since we consider only the P-Branch. A is now a convenient parameter for the determina-
tion of the type effect to be considered. (1) For A = +1 we obtain the Resonance Effect in the ground.state
and the Directional Effect in the upper State. (2) For A = 0, —2 there results the Directional Effect in the
ground state and the Resonance Effect in the upper state. (3) Finally for all other A the Directional Effect
occurs in both states. The case of small J1 was not considered by Lindholm. The optical collision diameters
for these three cases may now be determined from Eqg. (6.9’) and (7.54b’)

Case (1):
Frequency perturbation: Av = b + B (8.72a)
R R
/ 2etwd = | S0 1, 4B 10, (8.72b)
4<v> b <ov> p?
Case (2):

Same as Case (1).

* Lindholm defines <v> as the mean relative velocity.
t See supra, Sec. 8.4.
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Case (3):
Frequency perturbation: Av = b/R* (8.73a)
§[32 b
= 4 — 8.73b
g 4 <ov> (8.738)

In Cases (1) and (2) p may be found as roots of Eq. (8.72b), in particular there will be roots p,. for the
repulsive case (positive sign) and p_ for the attractive case (negative sign). In all cases of multiple roots p
the highest valued root will be taken as significant. Further we shall suppose there to be equal amounts of

2 2
resonance repulsion and attraction so that for o* from Eq. (8.72b) we shall write et . Now the p values

furnished by the three possible sets of physical conditions may be substituted into Eq. (8.70) with the result:

2 + p-—j2

5 =22 (<v>)SITBYSN; + <v> I N; & 5 (8.74)
i i

Let us first consider the Directional Effect contributions. The energy perturbation of a level for this
case has been given by Eq. (8.15). Lindholm approximated this equation by the expression:

1 1
2 Lk
E W = I—{? w__(A-2 — 1") (8.75)

which he noted is asymptotic for large J, exact for J; = J3, 869 of the correct value for J; = 1, J» = 3, and
929, of the correct value for J; = 2, = 4.
We are desirous of obtaining b for Eq. (8.74) from Eq. (8.75). b will be given by:

R [ drtutl 1 1
b = e——- E ‘) ;o (21)/: ,u] = Lat [ — ] .
h[ A P Lla+1-1 ar-1 (876

according to Eqgs. (8.71).
In order to find V; a Maxwell-Boltzmann distribution of the molecules over the rotational levels is
assumed. The rotational energy of these linear molecules is:

E;=hBJJ+ 1)

h
where: B = ——
8x*lc
_ MBIUJ4D)
so that the level population will contain the terme”  #7 = ¢"¥AT In addition each rotational level is

(2J + 1)-fold spatially degenerate as determined by M. Thus, if there are N molecules per cubic centi-
meter, the number in the rotational state described by J; will be:

heBJi(J+1)

molecules @J;+ 1) e T * y
N (% in J; ) =Nl—= ~g77in | = N = (8.77)
Z@/+he T % wy
' JmQ J=0
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Eqgs. (8.76) and (8.77) may now be substituted into the first term of Eq. (8.74) with the result:

2/8 ® /6
6D=2.2(<v>)‘/‘<M> N sz,[ 1 1 (8.78)

3 ®© o 1 -1 —
3h sz,J o LA+1) 1 A2 -1

Ja=0

where the prime on the summation sign decrees the dropping of those J; values for which A = +1, 0, —2
(Resonance Effect).

Lindholm utilized the values 4 = 2.65 x 10,18 <v> = 67560, N = 1.937 x 10 and I = 18.70 x 10-4°,
For these values of the constants, the first twenty or thirty terms in the sum must be considered. For Ja
values greater than this, the exponential factor in Eq. (8.77) leads to sum contributions small enough to be
neglected.

Now our attention may be devoted to the resonance contributions to Eq. (8.74). Lindholm utilized a
mildly modified version of the London development leading to Eq. (8.48). London’s molecular model, if you
will, consisted of a rigid rotator. Lindholm’s modifications amounted to a model change to a rotating-
vibrating molecule. As we have seen in Chapter 2, this means that the eigenfunctions will now be of the
form:

Vun = ¥¥uu (8.79)

Interactions will arise between rotation and vibration, but the only one with which we shall be required
to concern ourselves is the change in the moment of inertia with vibrational state. An example of this has
already been given by Eqs. (2.40).* The rotational energies will now be:

Ey = BhcJ(J + 1) (8.80)

‘We shall return to these considerations at a later point, but let us first consider the case of both molecules
in the ground state with A = +1. For the vibrational quantum numbers, the same Eq. (8.48) is valid as it
stands. London had calculated the matrix elements requisite for the evaluation of ay, a», and a; and had
obtained the

a? | a? a32> ) 1 7%utA
_yfet @ af) . 1 81
%<E1 T R® 6k (8.81a)

Lindholm proceeded to evaluate a; as follows: From Eq. (8.46):

2
oo = Vit Vit + Vi

He obtained the V; after the usual fashion from which there resulted:

-~ J+M)(J+Mi+1)(J+My+2)+ (T = M) (J =M+ 1)U =M+ 1) (J - My+2)
22J+1)(2J+3) +16 [(J+ 1)1 — M2] [(J+1)2— M)

a;

(8.82)

* The last three terms of Eq. (2.40a) are concerned with the effects of centrifugal stretching due to rotation and this effect
we neglect. The fact that this equation refers to a symmetrical top should cause no concern.
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Next a, must needs be averaged over all orientations of both molecules as determined by M; and M,
where (J+1) 2 M 2 — (J+1)and J 2 M; 2 — J as decreed by the resonance condition. For the
mean square value of a( he obtained, as was to be expected, Eq. (8.23):

T+ e+ 2 5.23)
‘RIFD@I+3)  6@T+1) (T +3) '

2
Lad> = —
R 3;4

Eq. (8.23) would appear almost completely independent of J for large J. (1) Lindholm supposed that

this would also be the case for <a,>. (2) For sufficiently large J it is a reasonable approximation to

J+1 J J J
replace ¥ and 3 by [dM,, and [dM, respectively. (3) Only the highest order of magnitude terms
Mie=l@t)  Mam—J T SJ -7

under the radical in Eq. (8.82) are to be retained. Utilizing these three approximations Eq. (8.82) may
be employed and we may let M; = xJ,M; = yJ to obtain:

4141
<a> = é‘;— / f dudy V18 + (18x%2 + 18xy — 14a® — 1dy?) = 2L52§ (8.81b)
—-1-1 '

after series expansion of the integrand and integration of the first five terms.
For small J direct calculation using Eq. (8.82)

J=0—> <a> v J=1- <a> a
= a T e . = a = —_——
' 225 °’ ‘ 2.48

indicates a rapid convergence toward Eq. (8.81b). Let us then substitute Egs. (8.81) into Eq. (8.48) with
the result:

Eo = ™I

1
o R (8.83)

L ¥ 1
2.52 R
Eq. (8.83) then gives the first-order interaction energy for this resonance condition, m the lower state
(Case 1). Eqp. (8.72) must now be solvedfor p. In Eq. (8.72b) B is simply given by the coefficient of R ™3
in Eq. (8.83) b is a slightly different case, however. Since in the upper state, we have the Directional Effect
taking place by, will be given by the coefficient of R~ in Eq.(8.75). On the other hand, the Resonance
Effect of the lower state furnishes boye, which is the coefficient of the R ~® term in Eq. (8.83) Finally:

b= bupper - blower (8‘84‘)

The values of B and b thus obtained may now be used in Eq. (8.72b) to yield the p values listed in
Table (8.3)

p from
A Eq. (8.58b") P+ p -
+1 2.82 X 107 2.96 X 107 2.58 X 107
-1 2.82 X 107 3.06 X 107 1.59 X 10~7

Table (8.3) o+ and p— for Case (1), resonance in lower state and directional effect in
upper state. Also p for resonance alone in the lower state. (After Lindholm!*?),
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From Table (8.3) the more powerful influence of the Directional Effect for A = ~1 is apparent. Sub-
stitution from this table into Eq. (8.74) yields:

N

[ 4

X wy
J' =0

bp = <v> (wyg 771 x 107 + w;_; 5.95 x 10~%4] (8.85)

where again the w; are defined by Eq. (8.77).
Finally Case (2) remains to be investigated and we now utilize the molecular model of Eqs. (8.79) and
(8.80). In correspondence with the u, of Eq. (8.43) let us take:

u’ = ¢y wo(1) ¥ ¢ (2)

and now there will be twenty-four additional eigenfunctions of this form which may combine with this one —
we assume that v is the ground vibrational state and v’ some resonating upper vibrational state.

In considering the matrix elements of ¥V, we first note that, in Eq. (8.2), the u; will be functions of the
vibrational coordinates. Corresponding to each of London’s matrix elements V; =. ¥, there are now two
matrix elements. As an example, to ¥ there correspond:

V' = Vi' = [ 455 WD) 05 %0V ¥5'5a Vs (D) ¥r'ss Vo @) (8.868)
Vi’ = [ 9551 9D 95 ) ¥ ¥542 ¥rD) ¥4 (i (8.86b)

Let us look at Eqs. (8.86) rather carefully since some important physical phenomena are inferred
by them. The rotational resonance condition | J; — Ja [ = 1 is fulfilled by all four two-molecule eigen-
functions. In Eq. (8.86a) the individual vibrational quantum numbers remains the same for both system
state functions appearing in the matrix element. Eq. (8.86b) presents a different case, however. In this
matrix element, the vibrational quantum number for molecule one changes from v to v’ uncer the aegis of V'
while the vibrational quantum number for molecule two changes from ¢ to v. Thus, one or more quanta of
vibrational energy are exchanged in this process, and resonance in the sense of Chapter 7 sets in. It seems
important to clearly differentiate between this exchange type resonance and the rotational type of Eq. (8.15).
Perhaps this type differentiation is not too satisfactory for | J; — Ja | = 1 also implies an exchange in that
the two molecules may exchange one quantum of rotational energy between themselves. The semantics of
the situation should hardly trouble us, however, if we have a clear picture of the physical phenomena involved.

In order to determine one of the reasons for neglecting exchange resonance, the vibrational portions of
Eqs. (8.86) may be written as:

Voo = [4.Du(Vdr [¥,(2)psby(2)dr = (8.87a)
Vo = [e(Dmd(Ddr [$,(2)mdy(2)dr (8.87b)

Eq. (8.87a) tells us that ¥/ = V,, London’s matrix elements. Eq. (8.87b) is nothing more nor less than
the square (the molecules are identical) of the matrix element of the electric dipole moment for the vibra-
tional transition v—v  In other words, it is proportional to the intensity of the rotation-vibration band
involved. For the bands which Lindholm considered, the intensity is very low which means that Eq. (8.87b)
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will be small. This in turn will cause Eq. (8.86b) to be small which allows us to neglect the exchange reso-
nance. Another consideration leads to the weakness of exchange resonance. The dispersion f.value
oscillator strength, or what have you, enters this resonance broadening as we have seen in Chapter 7. In this
case, we apply the “Principle of Spectroscopic Stability” in reverse and portion out pieces of the dispersion
Jf-value* for a monatomic transition to myriads of rotation vibration levels. The net result of all this is a
further decrease in the exchange resonanca effect which we now proceed to neglect. This means that we are
again only concerned with twelve matrix elements of the form Eq. (8.86a).

The perturber — we may distinguish it since we neglect exchange resonance — will hereinafter be in the
ground vibrational state and the absorber in an upper vibrational state for our considerations of Case (2):
A = 0, —2. If molecule one is the absorber and two the perturber, then:

E(l) = BheJ'(J' + 1)
EQ) = B'heJ"(J" + 1) (8.88)

according to Eq. (8.80) where B’ is the value of  rotational “constant” in the upper state and B” its value
in the lower state.

The eigenfunction which we select to correspond to u, of Eq. (8.43) is:
M M,
u = Vo ¥it1e (8.89)
The twelve eigenfunctions with which uy’ may combine are then analogous to the twelve functions of
Eq. (8.43), for example:
, M, M,
W' = Yry1o Yoz »  ete
Having obtained the requisite eigenfunctions, we may write down the equivalent of Eq. (8.44) using
Eq. (8.88)
EY/ = 2he(B' + B") (J+ 1) 4+ 2B"he
Ey = —2he(B’ + B") J — 3B"hc
E/ = —2he(B' + B")J + B"hc
E! = 2he(B' — B")(J + 1) (8.90)

]

#

]

Now | B’ ~ B" | K B, B”, since the variation of rotational constant with vibrational quantum
number should not be too great. Thus, although | E\' |, | Ey’ |, | Ey' | 3> | E® |, this inequality does not
bold between E® and E,'. As a consequence, E®) may be dropped from the first three denominators on the
right of Eq. (8.45) but not from the fourth so that for Case (2) we obtain:

2 2 2 2
ROED = — (% 4 & E‘_) L 8.91
(& + 2+ )4 S0 ®91)
where a; is again given by Eq. (8.46).

The value of the first term on the right is available from Eq. (9.50a) < a,! > may be taken as u4/6
from Eq. (8.23) with the result:

6R(EW)2 — EQ (aR-EA— 6———""41) B ( T

3h? 3 +w)=0

* Do you really eat babies, Mr. Swift?” **No, nor do I portion out picces of dispersion f-values.”
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of solution:

‘ 1-’;4 i \, 2E41r u‘I 4ut
W = }{E, — 24
E i{ CT R T 3BR* ' 6R*

} (8.92)
in which the term in R™'* under the radical has been dropped.
The second term within the curly braces in Eq. (8.92) gives us bypper- Jiower i8 again obtained from
Eq. {8.75).
From which:
37 _ 3x*

7
4 = T ( upper blowor) = "8*

riurl
B

(8.93)

It is again necessary to solve Eq. (8.72b) for p. If we let E,@ be E® with the by, contribution deleted,

%«——Z 1 may be replaced in Eq. (8.72b) by — / E;® dt so that this equation becomes:
v> p?

+®
Tl L+ 21[[ IE+ Et"JM‘I “4 ] '_ ; 8.94)
8h3<y> pb 4ht 6htpt 6’12

—00

In his first paper on the subject!® Lindhom concluded that B contributed little to the optical collision
diameter* so that he neglected the resonance contribution in this case. This small contribution would
indicate that a sharp resonance is required for effect. This sharpness is reduced by the variation of the rota-
tional constant for the two states since this variation will in turn cause a variation in the rotational level
separations for the two vibrational states.

Lindholm then obtained the Case (2) contribution as the additional Directional Effect contribution:

bp = <v> - [uy 478 x 104 + wy_, 3.43 x 10-14] (8.95)

Zw;y
J'=0

with the w, defined as before.

The total half-width is now the sum of Eqs. (8.78), (8.92), and (8.85). Fig. (8.2) gives the Directional
and Resonance Effect contributions as well as the sum of the Directional Effect plus the Resonance Effect.
Fig. (8.3) gives the individual Directional Effect contributions as well as the sum of the total Directional
Effect and Resonance Effect. Figs. (8.4), (8.5), and (8.6) simply give the total predicted widths in comparison
with Lindholm’s observed widths.

In alater paper'” Lindholm concluded that his approximation Eq. (8.95), was not sufficient and that
Eq. (8.94) should be utilized for a numerical calculation of p for each J value. This has the effect of raising
the plot of Eq. (8.95) in Fig. (8.2) 0.06 cm.~for J = 2, 0.12 cm.”! forJ = 5, 0.11 em.”* for J = 10, 0.05
em,™! for J = 16, and 0,02 em.,~! for J = 20.

* See supra, Eq. (8.72b).
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8.12. BROADENING IN THE DIATOMIC DIPOLE MOLECULE HCl

Lindholm also carried out an investigation similar to that of HCN for the HCI molecule.!” This
molecule together with HCN provide two of the rare examples of simple linear molecules possessed of large
dipole moments. This fact led to Lindholm’s choice of it as an object of his considerations.

The vibrational transition involved was 0 — 4 resulting in the band at 9152A. In this case he considered
both the P and the R branches in contradistinction to the HCN investigation.

We begin by considering case (3) of Sec. 11, the Directional Effect in both upper and lower states. In
arriving at Eq. (8.76) for this case for HCN the constancy of the moment of inertia in the two vibrational
states was inferred. Since this would be a much worse approximation for a diatomic molecule, the use of
Eq. (8.75) for the HCl energy perturbation with the perturber in the lower vibrational state and the absorber
in the upper vibrational state is ruled out. Eq. (8.75) may still be used, however, when both perturber and
absorber are in the lower state. Margenau’s Eq. (8.14) may be used for the interaction energy with the
absorber in the upper state. We again let the subscripts one and two denote the absorber and the perturber
respectively and Io and I, the moments of inertia in the ground vibrational state and in the vibrational state
having v = 4 respectively. Eqs. (8.14) and (8.75) are used to obtain b from an equation of the form
Eq. (8.76); p is subsequently found from Eq. (8.73b) and the result for the P-Branch follows* from Eq. (8.74):

_ 812;;"[0)“/‘ N &, [ 1 {( 1 L/I, )—-x
8p = 2.2(<ov>)¥® (——-———- . — —
p = 22> g Dl A T A A LW AR

Ew_,, Jy=0
Jr=0
1 L/L )._1 _ ( 1 L./L)—1 3 < 1 10/14)—11 L1 ]m
+<Jl—1 ht1 AR A =it R Ty

(8.96)
in which all symbols are defined as in Sec. 11.

One may obtain a quite similar expression for the R-Branch (AJ = + 1). In addition to Eq. (8.96)
Lindholm imposed the restriction on 5p that p > 0.30 x 107 cm., the Landolt-Bornstein value of the gas
kinetic diameter. The resulting line widths with J-value for the Directional Effect alone (Case (3)) are
given in Fig. (8.7).

Case (1) of Section 11 may now be,considered. One again obtains Eq. (8.84) for the Resonance Effect
in the lower state. The treatment of the Directional Effect in the upper state of the absorber differs now
from Sec. 11 in that we again use Eq. (8.14) to determine b, of Eq. (8.84). Having found b,p.r, Egs. (8.83)
and (8.84) may be used as in Sec. 11 to arrive at two equations (one for the P-Branch and one for the R-
Branch) similar to Eq. (8.85). The resulting 8z vs. J curves for Case (1) appear in Fig. (8.7).

Finally Eq. (8.94) (and a similar equation for the R-Branch) was utilized by Lindholm in the treatment
of Case (2). By numerical solution of these two equations for p for each value of J in the P and R-Branches
and subsequent utilization of them in an equation of the form Eq. (8.70) (with the IV, given by Eq. (8.77))
this author obtained the Case (2) contributions as given by Fig. (8.7).

Fig. (8.7) gives also the sum of the three contributions to the line width as well as Lindholm’s experi-
mental results for the HCl widths considered. Although the agreement between theory and experiment
appears confirmatory, Lindholm investigated the possible contributions of the Dispersion and Induction
Effects as being responsible, rather than experimental error, for the disagreement observed. In general he

* Cf. supra, Eq. (8.78).
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concluded that the effect of these two phenomena was negligible except possibly for J = 0, thus explaining
the R(1) discrepancy apparent in the figure.

The pure rotation line widths may also be calculated for HCl. All absorbing transitions in this case
arise from AJ = +1, and no change in the moment of inertia with rotational state occurs. For the Direc-
tional Effect then, we obtain Eq. (8.78) with the bracketed expression replaced by:

[(A - 11)s ~1 A _1_ 1] (8.97)

Since there is no change in the moment of inertia with rotational state, we may here obtain sharp
resonance both for the upper and lower of a pair of states. Thus one would obtain in place of Egs. (8.85)
and (8.95):

o = <v> ;N— [1.364 x 10~ (wy, _y + wy,42) + 1.357 x 10 % (wy, + wy,41)] (8.98)

Zwy,
J1=0

8.13. BROADENING OF LINEAR DIPOLE MOLECULES ACCORDING TO FOLEY

Foley’” considered the broadening of the rotation-vibration lines utilizing his Eqs. (6.143) and (6.144)
for the half-width and shift respectively.

For an inverse third power dependence of the interaction energy on the molecular separation, for
example, p = 3 in Eq. (6.143) and this equation becomes:

Y da sin?
8 = SrNZ ?*f _i:‘T“.-"‘ = 4xN Zn%= ABN<B> (8.99)
0

where we may recall that vy arises from Ay = Jy/r while 8 arises from Ay = }(ﬁ/r’.

Now Foley used Eq. (8.23) — the root mean square value of the Rotational Resonance interaction —
as<p> in Eq. (8.99) to obtain the half-width due to this effect. One might question this procedure, how-
ever, since Foley’s definition of y* is the difference between two §8’s defining interactions for two states.
At any rate, the resonance half-widths obtained in this manner are listed in Table (8.4).

Foley utilized Eq. (6.143) with p = 6 for the case of the Directional Effect, and for this case the inter-
action constants were obtained by him from Eq. (8.15). The results of his calculations for HCN and HCI
are given in Table (8.4).

Fig. (8.18) gives a comparison between the & vs. J curve for Foley as well as Lindholm. It would appear
that Lindholm’s curve more closely approximates the experimental results than Foley’s which Anderson®
attributed to possible errors in Foley’s calculations. Actually there is no reason for much variation in these
two sets of results. If Foley was desirous of working within the framework of his theory rather than
Weisskopf’s there appears to be no particular reason for his not using Lindholm’s careful method of doing so.
Had he so done it seems reasonable to suppose that the result would have been to raise Lindholm’s curves
of Fig. (8.18) (for p equals three or six in Eq. (6.47) Foley’s half-widths exceed Weisskopf’s by factors of
1.57 and 1.21 respectively) perhaps to better agreement with experimental data rather than to distort these
curves.

* Cf. supre, Eq. (6159).
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HC 3 HCN
[ sec.

{ cm,—1 ] order Resonance Total Shift

0 0.39 0 0.32 0.54 .86 --0.12

1 0.60 1 0.39 0.92 131 +0.14

2 0.72 2 0.44 1.33 1.87 +0.14

3 0.70 3 0.48 1.69 2.17 +0.14

4 0.58 4 0.50 1.98 2.48 +0.13

5 0.42 5 0.53 2.20 2.73 +0.12

6 0.27 6 0.54 2.35 2.89 +0.10
1 0.158 7 0.54 2.41 295 +0.065
8 0.80 8 0.55 2.41 296 -+0.040
9 0.038 9 0.56 2.34 290 +0.010
10 0.016 10 0.55 2.24 2.79 -0.018
11 0.54 2.06 2.60 ~0.043
12 0.53 1.87 2.40 —0.067
13 0.51 1.67 2.17 ~0.082

14 0.50 1.46 1.96 ~0.10

15 0.48 1.25 173 -0.11

16 0.44 1.05 149 —0.11

17 0.42 0.87 1.29 -0.12

18 0.38 0.71 1.09 -0.11

19 0.36 0.56 0.92 —~0.11

20 0.32 0.44 0.76 -0.10

21 0.30 0.34 0.64 —-0.10
22 0.26 0.26 0.52 —0.088

Table (8.4). (After Foley?)

8.14. AN APPLICATION OF SYMMETRICAL TOP DIPOLE BROADENING. AMMONIA

The development of microwave spectroscopic techniques in recent years has naturally led to a quickened
interest on the part of many investigators in pure rotational spectra and the line broadening particular to
this spectra. In this and the next several sections we shall consider some of the theories which have
been advanced recently aimed directly at microwave broadening effects or at microwave and infrared
effects.

In Appendix (VI) the manner in which absorbing transitions may take place between the two members
of an inversion doubled vibrational level has been indicated. Taking, for example, the ground vibrational
state and the possible inversion transition within this state, the variation of the inversion doublet separation
with J and K will be responsible for the occurrence of many spectral lines as a result of this transition.

Bleaney and Penrose’ have furnished the microwave field with some excellent results on the widths of
these ammonia inversion lines. Some of the results of their experiments are contained in Fig. (8.9).
Bleaney’ used an interruption type approach to this broadening unter the assumption that the disturbing
ammonia molecule causes a certain perturbation of the absorbing ammonia molecule due to the field of its
dipole. A collision is declared as having occurred at a certain separation or interaction energy, and, under
an application of the normal interruption theory, Bleaney determines the half.widths as proportional to
3 VK2/J: + J. Although a cursorily satisfactory agreement between theory and experiment was thus

obtained, Margenau'!’ has made a telling point which casts more than a little doubt on the meaningfulness
of this agreement.
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In order that this interruption approach succeed in explaining the broadening, it was found that an
interaction energy (corresponding to a minimum collision-defining separation) of around twice the inversion
doublet level separation be used. “If this were to be taken literally it would imply that the molecule could
go on absorbing even when the perturbation is larger than its natural frequency or indeed when the natural
frequency is negative. In suggesting this the impact theory rather defeats itself.”"” This is not only a
telling but also a restrained comment on the situation.

Margenau thus decided to use the interaction between two symmetric dipole rotators* in conjunction
with his Statistical theory to account for this broadening. His results were in good, if not spectacular,
agreement with those of experiment, but, equally important, they were based on tenable theoretical
ccnsiderations.

To begin with, the interaction energy has already been found as:

r KK .
R hh+Dh(a+D *

V(J1KiJ:KaA) = (8.100)

where ¢, is the expression (in M, and M;) in curly braces in Eq. (8.61). Here A, and hence ¢,, may take on
(2J1 + 1)(2J; + 1) values corresponding to the number of values available to M; and M.

Egq. (8.65b) has already told us that an interaction of the form Eq. (8.100) will result in no spectral line
shift so we turn our attention solely to the widths.

If the doublet transition “normally” results in the absorption of radiation of frequency », then at
separation R between two ammonia molecules, the absorber would absorb radiation of frequency:

1 B
= —-— (V' — V” = ZAp 10
v vo-{-h( ) V°+R‘ (8.101a)
where, from Eq. (9.69):
2
B, = * KK, (e — ¢) = blea = ¢,) (8.101b)

b T+ DR+ D

Perhaps it should be emphasized again that in the transition from one member of the inversion doubled
vibrational level to the other J1KiJ:K; do not change their values although the dipole changes its orientation
causing M, to change. If this were not the case Eq. (9.70b) would obviously not be justified. Margenau
ignored the selection rules on the basis of the large number of possibilities for J; and J; for all but small
Jiand J;.For this reason A, is replaced by o where o takes on all values from one to n=[(2J,+ 1) (2Jx+ 1)].2

We are now in a position, after assuming binary encounters and the resulting low pressure, to carry
out the probability calculation leading to a statistical line shape.

We now divide space into private cells of volume 1/, and to each of these we assign a perturber. Next,
n of these cells are taken, one for each value of (1 < ¢ < n). In the o-th cell:

B, _

v=w+R’

w+f (8.102)

* See supra, Sec. 9.
t Bleaney and Penroee used quite low pressures so that this should be a reasonable approximation.
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according to Eq. (8.101a) at separation R. We presume the cells to be spherical, and the probability that
the frequency lies near f (the portion of the o-th space contributing this frequency being a spherical shell of
radius R) is:
ir [ d
e (% )4 ,
(Ndf 3 \ar LY (8.103)
Let us take f > 0 which means that one half the n cells will contribute to the probability since
Eq. (8.101b) is symmetrical as indicated by the zero value for its mean. In order to obtain the intensity
at a frequency separation f from the line center it is now merely necessary to sum Eq. (8.103) over all n/2
values of o (for f > 0) with the result:

N4 (aR\|_4r N |3~ d (B
I = =2, — --) =20 ——(——") 8.104
0 nZe,'r i/l 3 n def (8.104)
where N/n, the normalizing factor, is simply the reciprocal of the volume contained in the n cells.
Again utilizing the symmetry of the B, arising from the disappearance of the mean value
d f | B, | d Z [ B, |
—_ [ 4 = & —_— L4
i< f i < f
so that Eq. (8.104) becomes:
2| B, |
2N 7 (8.105)
3£/ n

In normalizing Iy, the lin.its of integration are B,/R%yax (R*nax = 3xN/4) and infinity, where the lower
limit is different in each term of the sum in Eq. (8.105). Eq. (8.105) gives the positive wing (f > 0) of the
distribution which, however, is mirrored in the negative wing (f < 0). Consequently the normalization
integral I(f) must be equal to one half.

On the basis of the large value of n, Margenau assumed a Gaussian distribution* of the B,. By virtue
of this Gaussian assumption we may equate the mean of the absolute values to the standard deviation or root

- . 2
mean square value of the deviation from average times \/ —
x

x
and from Eq. (8.101):

[_1_ Z B,z]" : (8.106a)

n

Z B2 =03 (e — €)= 26012 T ¢,? = 2b'n <&> (8.107b)
Ap A

L4

where < &> is the mean square energy and has been given by Eq. (8.68a).
Eq. (8.106b) may now be substituted into Eq. (8.106a) and the result in turn substituted into Eq. (8.105)

to yield:
4 [2x\V2 3 K.K. N
0= -—(——) " T 3 8.107
773G (LW + DA+ D)2 f (8.107)

which quite obviously holds only in the line wing.

* This should not be supposed to imply a Gaussian distribution of intensities in the spectral line.



262

If we assume a dispersion distribution, one obtains for large f = » — w:

1 8
9= x (v — w)?
so that:
2x\¥8 2 KK
§ = 21— N .
(3 h s+ DAUs + DA (8.108a)

Finally the average value of the involved combination of perturber quantum numbers over a Maxwell-
Boltzmann distribution* is taken:
3 [Ka(Js + J)] g(JaKy)e ~FIEDAT

<K 1 - JiKy
2WJo(Js + 1)> Ja 4UsK) e~ TIKIIT

In Eq. (8.109) the (/1K) are the symmetric rotator energies as given by Eq. (2.37b). The g(J:Ks)
are the statistical weights of the levels. Smith'” has carried out the calculation indicated by Eq. (8.109)
to obtain 0.54 for T = 20°C. For ammonia 4 = 1.44 x 107% e.s.u. On this basis Margenau obtained the
result:

(8.109)

LA T 19 T S S
P il + D
and the straight line in Fig. (8.9) yields the results of applying this equation.

This then is Margenau’s low pressure (and the theory has not here developed for any but low pressures)
result for ammonia inversion lines, and its success for this case is manifestly apparent from Fig. (8.11). Some
of the modifications which higher pressures invoke will become apparent in Margenau’s more refined treat-
ment of interactions between potential hill molecules which we consider next.

em-Y(mmHg)-* @ 20°C. (8.110)

8.15. INTERACTIONS BETWEEN LINEAR VIBRATORS WITH MIRROR POTENTIALS

The shift to the red with increase of pressure of the NH; inversion line, which had recently been
observed,® '™ provoked the Margenau investigation'’® of the phenomenon which we shall consider in this
and the two succeeding sections. First let us note that in applying the term “linear” to NH; (or other
mirror potential molecules) we simply wish to imply that the mirror potential of the molecule is a function
only of the separation of the )V atom from the H plane.

In considering this problem we again take the eigenfunctions for the two doublet members-of a vibra-
tional level as:

¥= 20 - D] Yo ~ vy) (8.111a)
v = 200 + D (v + vy) (8.111b)
where again E; > Ej.

Now two interacting molecules of this type are to be considered.

Margenau chooses to treat the case in which the dipoles of the two molecules are aligned along the same
axis. If we let x; be the separation of the mean positive charge from the center of mass of a molecule, the
resulting interaction between the two molecules under these circumstances is:

U= —2a8%%
7 (8.112)

* See supra, Eq. (8.77).

e
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If H(1) and H(2) are the unperturbed Hamiltonians for the two molecules and U(l, 2) the Hamiltonian
of the interaction, then the present problem may be approached by minimizing

H(1,2) = H(1) + HQ2) + UL2) (8.113)
after the fashion of Sec. 8.4. Eq. (8.27) for the present case is:

¢ = AY(D¥1(2) + Béa(1)¥a(2) + C¥i(1)¥a(2) + Dys(1)¢1(2)
= Ay4 + Byp + Cy¥o + Dyp (8.114)
All diagonal elements of U vanish, which can be made easily apparent. As we have noted an integrand
must be symmetric. Now a linear combination of position coordinates is antisymmetric. Thus, ¥ is sym.-
metric 8o xy, is antisymmetric and yYsrys is antisymmetric. #; is antisymmetric 8o xy, is symmetric and
Viay is antisymmetric. Thus, the integrals involved in the diagonal elements of U disappear. As a conse-
quence the only allowed elements of U are:

Usp = Ugp = — %;‘:xn’ (8.115a)
where: x

21 = [Yirpyd = — i (8.115b)
and x=[apdx = — fxy_tdx (8.115¢)

Thus, the nonvanishing matrix elements of H(1,2) are:
Hyq = 2Ey; Hpg = 2Ey; Hoe = Hpp = E1 + By

Hyp = Hep = Uyp (8.116)
Eq. (3.116) leads immediately to the secular determinant:
7 2 - B 0 0 =0 (8117
0 0 E, +E, -E y
0 0 y E+ By~ E

in which we have replaced the Uj; by y.

As is apparent from Eq. (8.117) the determinant has been split into two, two by two blocks, each of
which has two solutions. One simply solves for the E and subsequently obtains the constants 4 through D
in Eq. (8.114) from equations of the form Eq. (8.31). After this fashion one obtains as first order energies
and eigengunctions:

E® = 2E, + R(E, — Ey)

80 = (1 + SH7 [la(La(2) + S¥a(1)¥a(2)] (8.118a)
E® = 2E, - R(E - E)

80 = (1+ 57 [f(Da(2) — SHa(a(2)] (8.118b)
EO = B+ B+

3 = = [HDWE + WOKE) (8.1180)

EO =E +E -y
30 = j—_z_ (D@ — D] (8.1184)



s=EBE-Bp (8.118¢)

A cursory consideration of Eq. (8.118d) is sufficient to show that the eigenfunction in this equation is
the only one which is antisymmetric (changes sign) on exchange of the coordinates one and two. As a conse-
quence €€ cannot combine with any of the other eigenfunctions, and may be neglected.

Now ®® and ®® are symmetric with respect to a reflection of their cooriinates through the origin
(even parity). On the other hand, @ is antisymmetric (odd parity). The matrix elements of X = x; + x4,
the electric dipole moment (odd parity), determine the intensities of possible transitions among the states
whose energies and eigenfunctions we have ascertained. Since X is antisymmetric, it may only combine with
a symmetric and an antisymmetric pair of eigenfunctions. This means that under the influence of X, $®
and $® as well as @ and $*® may combine, but @ and &® may not. If we let A; and w; respectively be
the energy difference and probability of such a combination, there results, from Eqs. (8.118):

A = E® — E® = (E, — Ey) [ + A)Y3 + 4] (8.119a)
Ap= E® — E® = (E; — E) [(1 + A)V2 — 4] (8.119b)
SR eyl e R (&1
w = | feOX D dx 2 = 2 g_%—_lll’ x4t (8.119d)
w = | feOXIWdr | =2 (S—f—;"—l!lz Tg? (8.119)

wherein all symbols have previously been explained.

The results of Eqs. (8.119) are rather self-evident, and appear in Fig. (8.12). The frequencies appearing
in this figure are given in units of the inversion doublet separation. From this figure also the manner in
which the line splitting increases with decreasing particle separation is apparent. The decrease in the intensity
with decreasing separation for the higher frequency is also notable. From these considerations, however,
one would expect that with increasing pressure the inversion line frequency should decrease as indeed it does.
One further point might be made to the effect that the line width could hardly be expected to vary with the
pressure, as Margenau has noted, under the conditions prevalent here — two frequencies varying differently
with pressure.

816. ROTATING LINEAR DIPOLES WITH MIRROR POTENTIALS

We now allow our dipoles to rotate as symmetric tops in addition to the behavior which we prescribed
in the last section as a next approximation to the actual molecular phenomenon. It appears apparent that
our Hamiltonian will now take the form:

H = Hy + Q = H,(1) + H,2) + H,1) + H,2) + Uf(9,¢) (8.120)

where H, is the Hamiltonian of a symmetric top rotator; H, is the H(i) of Eq. (8.113) and 2f(8,¢) is the
bracketed expression of Eq. (8.2).
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As our unperturbed eigenfunctions let us choose:

Oy (x1%2) Yo, (Br101x1) Ykt (B2axa) (8.121a)
where the Y gy are given by Eq. (2.35b). Section 16 indicates that a good choice for &y will be:
¢ = l/’1(1)¢1(2)
& = V3 [a(1)¥a(@) + ¥a(D¥a(2)] (8.121b)
;3 = ¥a(1)¥a(2)

There is no question but that H, is diagonal with respect to Eqs. (8.121) since the eigenfunctions of this
latter equation are the eigenfunctions of the Iamiltonian operator Ho. The eigenvalues of this operator we
know to be:

(foKlMlszzleHol NI KM J.K:My) = Ey + Epg, + Ejx, (8.122)
in which the Ey are given by the diagonal elements in Eq. (8.116), and the Ex are given by Eq. (2.37b).
Q, on the other hand, is not diagonal and its matrix elements are given by:

(N"LKM" KoMy | Q| N'LWKMY KeMyY) = (N" | U N) (KM KMy | f| LWKMY LK, M)
= (N[ U N) (MM | f | My'My) (8.123)

In Eq. (8.123) the matrix elements of f which are involved with changes in the quantum numbers
J and K are neglected. This ignoration entails a good approximation since the levels having different J and K
are so greatly separated in comparison to the separation of the two members of an inversion doublet that
they may be neglected. Neglecting M, the spatial degeneracy parameter, and its possible change would be
something else again.

Egs. (8.112), (8.115), and (8.121b) may now be used directly to obtain:

22 0 01
NU||=[WN"IUIN)|[ = — T x| 01 0 (8.124)
1 00
In addition Eq. (8.122) may be written as:
E, + 2E, 0 0
Tl = 0, E+E+E 0 (8.125)
0 0 E, + 2E,
Then from Eqgs. (8.120) and (8.122) through (8.125):
H=|[T|||(M"M"| 1| M'M) |+ || U|| || (MM | f| Mi'My) || (8.126)

A quite standard and well known procedure exists* for diagonalizing || (My’My" | f | My My') || while
leaving || (My"”M,;"” | 1 | My’M;’) || a unit matrix. This procedure is carried out to obtain a matrix for H
which consists of three by three blocks along the principal diagonal of the form:

E, + 2E, 0 foy
T+ £U] = 0 E.+E+ E+fy 0 (8.127)
fiy 0 E, + 2E,

whose eigenvalues must be determined.

* For example the procedure is carried out every time one determines the normal modes of a harmonic oscillator.
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In order to accomplish this Margenau let ¢ = E — (E, + E;) — E,, that is, he let ¢ be the difference
between the perturbed energy E and the intermediate of the three unperturhed levels (see for example
Eq. (8.125)). Solutions are then required of:

E, — E — ¢ 0 fiy
0 Jiy — ¢ 0 = 0 (8.128)
f,'y 0 "‘(E1 b Ez) - €
which turn out to be
&0 = [(E, — Ep)t + fAy]2 = (B, — Ep)(R; + 1) (8.129a)
@ = fiy (8.129b)
¢® = — (B, — E)? + 2 = —(E, — E)(R; + 1) (8.129¢)

fy 2 11/2
where we now define R; as: R; = [1 + (—-—’——)] -1
E, - E,;

We may note the agreement between Eqs. (8.118) and (8.129) when E, is neglected. Let us consider
just how the problem stands at this point.

The matrix of f in Eq. (8.126) contains (2J; + 1)(2J: + 1) rows and columns since this is the possible
number of values of M; and M,. This in turn means that there will be this number of diagonal elements.
Note that in Eq. (8.126) each element of the matrix of f is multiplied by the three by three matrix || U ||
and similarly for the unit matrix. In the diagonalized version of Eq. (8.126) there will be 2J, + 1)(2J: + 1)
matrices of the form Eq. (8.128) along the principal diagonal leading to 3(2J, + 1)(2J: 4+ 1) roots of the
form Eq. (8.129). This means quite simply that due to the interaction considered in this section each inver-
sion doublet will be split into 3(2J; 4+ 1)(2J; 4 1) energy levels.

The symmetries of the eigenfunctions associated with Eqs. (8.129) are the same as those associated with
the corresponding eigenvalues of Eqs. (8.28). Thus the corresponding states may combine here. In place
of the two spectral lines resulting from the considerations of Sec. 16 we now have (2J;, + 1)(2J: + 1) lines
of increased frequency and a like number of lines of diminished frequency. If A is replaced by f;A in Eqgs.
(8.119), thus redefining also S, the transition probabilities for the present case result. As may be noted from
Eq. (8.2) f, is never greater than unity so that in general we may expect the level shift indicated by Eqs.
(8.129) to be somewhat less, on the whole, than the shift of the previous section.

We shall return to a consideration of the results of this section after a brief study of multiple encounters,
but now let us merely mention an earlier point which this section bears out before turning our attention to a
three molecule interaction.

In Eqgs. (8.129a) and (8.129¢) ¢ has a dependence on quadratic f,;y while in Eq. (8.129b) a linear relation-
ship exists. Then for the case f;y < 1 we may consider the upper and lower levels, as given by the first and
third of Eqs. (8.129), as fixed while the intermediate level shifts its position in linear relation to f;y. This in
turn means that the two inversion frequencies change in value as +f;y, and we may recall that this result
was forecast in Sec. 15 for the case of low pressure. The more accurate low pressure treatment of this section
tends then to bear out this earlier result.
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8.17. THREE MOLECULE INTERACTIONS AND THE NH;s INVERSION LINE SHIFT

In order to determine whether a consideration of many molecule interactions tends to change the
theoretical prognostications in the preceding sections, Margenau investigated the case of the interaction
between three very symmetrically arranged linear vibrators possessed of mirror potentials. The simplest
configuration of three such models is a placement of them at the vertices of an equilateral triangle with the
axes of their dipoles aligned parallel to the opposing faces of this triangle. This was done; no rotation was
aliowed, and the resulting interaction effect on the energy levels was determined after the fashion of Sec. 16.
Let us sketch this solution very briefly.

Eq. (8.112) becomes:

5

U= Y TR; (2122 + 2125 + 23%3) (8.130)

and the symmetric eigenfunctions corresponding to those in Eq. (8.114)
Ya = u(@(3) = 111 E, = 3E,

¥s = 112 + 121 + 211 Ep = 2E, + E
Vo = 122 4 212 + 221 Eo = Ey + 2E (8.131)
¥p = 222 Ep = 3E

which lead to:
0 0 32 0
0 62 0 32

32 0 62 0 (8.132)
0 32 0 0

o=

A B
Whel'e. 2= m "R‘;‘
The determinantal analogy to Eq. (8.119)
3E, - E 0 32
0 2E1 + Ez + 2z — E 0 F4 = Q (8.133)
z 0 Ey+2E+2:—E 0
0 32 0 3E; — E
of solution:
E® = 3E, E - E); o0 = (1 I 8.134.
1+ 7 E) ( + 3A’) ¢4+ 3A%_ ( a)
-12 .
E® =3 E—-E); 8 = (1 ) ”' | 8.134b
Es + n(E; — E) +3A’ 3A¢B+¢D_L ( )
s -
E® = 3B + n(Ey — E) ; 8® = (1 + 3 A,) rn + 2y (8.134¢)
= R = r M
EO = 35+ nify - B s 80 = (14 22y 4y ] 01340
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o ‘E sm=[(L~ AP+ 3472~ Q= A) 5 m=[(1+A2+3a%2+ 1+ 4)
17 L

m= = [0 = A3 = L= 8 5= = [+ A7 + 34 (14 4)

The allowed matirix elements of X = x; + x» -+ x5 together with the corresponding energy differences
are:

I

where: A

2
Xt = BRI 5 h = @4 - (B - B (8.135a)
3 3

A A Inma)? _
= (f\zn —1+-tn 2‘;4(:2. -{?’—',h:’?‘;l))zx2 $Au= @ m= (B - B) (8.135b)
in 34

A A 2 ?_
Xo? = (5\2"3-1712:;3(; .:_m;;)sz) 38 = (~3 4+ m— m)(E, — Ey) (8.135¢)
X = (Ans + Ang + Fnen)?
(A + 1) (A* + $nd)

The results of Egs. (8.135) are plotted in Fig. (8.13). Since the transition probability X;2 is very small
it has not been indicated on these plots, and, correspondingly Ay, has been neglected, As was to be expected
the inversion frequency has now been split into four components. Of the three we are here considering, it is
to be noted that as in the two particle collision case the component of decreasing energy is also the component
of increasing intensity while the reverse now holds for both the components of increasing energy. A com-
parison of Figs. (8.12) and (8.13) serves to illustrate a notable difference between the two and three particle
cases. The dominant (intensitywise) frequency decreases much more rapidly with A in the three molecule
case than it does in the two molecule case. This *“fact” leads Margenau to an interesting conclusion.

As we have seen the larger number of interacting particles has led to a greater frequency perturbation.
Through Eq. (8.129) the effect of rotation is to decrease this spread. Compensating effects appear to be
in the wind, and the results of Sec. 16 are at least suggested as valid under these conditions.

Under the assumption that the resonance frequency could be approximated by the mean frequency,
as given by ks = wyAr + wyrArr, and that A < 1, Margenau obtained for the shifted frequency:

XA =3+ m— )l — E) (8.135d)

7=l — A% (8.136a)

2
Since: A= 24 = 2N = 0.6

(B, — E)R*  E -~ E

where p is the ammonia pressure in atmospheres, £y — E; = 0.8 cm.~', 4 = 1.44 x 10-'8 and the temperature
is taken as 0°C, Eq. (8.136a) becomes:

7 = u(l — 0.36p%) (8.136b)

This can only be expected to hold at low pressures since (1) it has been obtained under the assumption
of a binary collision or a two particle interaction and (2) the factor A has been assumed as small. The
“dominant” frequency may also be written approximately for low pressures from the binary theory as:

vp = n(l ~ 0.6p) (8.136¢)
and this may be compared with the experimental results.
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From Fig. (8.12) the result is 0.44 cm.™ and from the experimental data® 0.5 cm.~! for the dominant
frequency at one atmosphere. It would appear from this agreement then that this approximation and the
theory from which it arose is good up to pressures of this order. As Margenau has demonstrated it definitely
fails for ammonia above this pressure, however.

Thus, in this and the preceding two sections we have considered Margenau’s method of approach in
successfully accounting for the shift of the inversion line at low pressures through the assumption of binary
interactions. We have also noted the much more rapid decrease of the energy of the “dominant” frequency*
with A for the three particle case than for the two particle case.f The actual failure of the two particle
theory for higher pressures stems from an inability on the part of this theory to cause a rapid enough decrease
of this frequency with A, Thus, it would appear that the many particle interactions are at least pointing
in the direction of the required correction for higher pressures.

8.18. ANDERSON'S LINE BROADENING THEORY

What Mizushima has described as an elaborate approach was utilized by Anderson® in what we may,
with some justification, term another Interruption Broadening consideration. Our consideration of his
theory will perhaps be somewhat sketchy in comparison to certain of our other studies,**

Anderson begins by making what he calls the “‘assumption of a classical path.” We might interject
here that we have inferred the translational motion of the molecules as classical — the meaning of the above
phrase — except in our consideration of the Jablonski theory. Ile then arrives at the equation for the
intensity:

+o0 . e
I{w) = const w'Tr || p, f dte™'u,(t) fa't'e""l p ) | (8.137)

which has a somewhat familiar appearance. In essence a rather hugger mugger{t quantum mechanical solu-
tion of this equation for the line shape, line width, and line shift under certain rather standard interruption
assumptions constitute the residue of the theory. We shall be a little less sketchy than this, however.

First the matter of obtaining Eq. (8.137) must needs be considered and we shall only do so in a qualita-
tive manner which tends to justify the result. Anderson, in his dissertation, has used the quantum radiation
theory to obtain this equation, and Margenau and Bloom'? have, in quite a sophisticated manner, obtained
an equation of the form Eq. (8.137) which contains two terms, one for the true absorption and the second for
the induced emission. Let us merely indicate how this equation might arise.

We begin with the classical intensity distribution based on the Fourier analysis of the varying dipole
moment of a molecule:

+o0
o | [ () de ! (8.138)

which we suppose averaged over all states. Based on an appeal to correspondences we now replace the
observables in Eq. (8.138), namely, x,(), by the analogous quantum operator. In order to find an average
we utilize the density matrix as indicated by Eq. (6.162) to obtain Eq. (6.117). Objections to this method
can, of course, be raised (commutability of u,(t') and u,(¢) for example) with complete justification, but we
accept Eq. (8.137) since we agree that a rigorous derivation of it exists.

* See Fig. (8.13).

1 See Fig. (8.12).

** A thorough coverage of the Anderson theory has been carried out quite recently by Tsao and Curnutte. 8
1 The degree of hugger muggery here is directly related to the brevity of the article in question.
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Before continuing let us discuss time development operators, unitary transformations and such, briefly,
of course.

Suppose there to be a Hamiltonian of the form H; + H, where the H, is the unperturbed Hamiltonian
of a two particle system and the H, that for the particle interaction. We further assume that we have
diagonalized the matrix of H and obtained this operator’s eigenfunctions as y,,(0). Under the aegis of H
we develop from these eigenfunctions the eigenfunctions ¥, (t) as follows:

¥a(t) = Ugn(0) (8.139)

where U is the so-called “time development operator.” This operator is of the form e"?¥* for H H(¢) and
of the form e~#/¥, # 4 for H = H(t) where H(t;) commutes with H(z,), that is:

H{t)H(t) = H(t2)H(#)

for any t; and t.. The substitution of this latter operator into (z}( %— -~ H(t)) = 0 tends to verify this
¢

immediately.
Let us suppose we have a matrix relation as follows:

g = Uil (8.140)

Then we have carried out a similarity transformation, and a factor concerning this transformation for which
we shall have some little use is the invariance of the trace under such a transformation. In Eq. (8.140)U-!
is the inverse matrix* such that U~*U = 1. We shall be primarily interested in unitary matrices which are
defined by the relation U-! = U} where Ut is the adjoint matrix.** If the matrix U in Eq. (8.140) is
unitary then the transformation of Eq. (8.140) is unitary.

It so happens that Eq. (8.140) not only served to illustrate some facts about matrices but also is a rela-
tion among the time development matrix (TDM), the moment matrix u(t), and the matrix, o, of u(t) at
t = 0, Although we shall not dwell on this relation one may surely intuitively grasp the manner in which
the TDM shapes the behavior with time of the moment matrix from the value of that matrix at time zero.

A modified TDM may now be defined such that:

T = Uo“‘ U U= Uo T (8-141&)

where:

Us = exp [- % Hot] (8.141b)
When Egs. (8.141) are substituted into (¥ 58;- — H) = 0 the result is:
iﬂ(i}oT + Uo;r) = (Hy + H)U,T — iﬂUo'i‘ = HonT«——»ilfI‘ = (U H;UgT (8.142a)
and when they are substituted into Eq. (8.140) one finds:

u(t) = T exp (}‘- Hot) o xp ( - L};Ho:) T (8.142b)

* We shall cease to use the symbol || {| as designating a matrix and simply use boldfaced type from this point on.
** We here refer to the complex conjugate transpose (ai; = a;;) which is sometimes termed the "associate matrix.”



2711

a typical matrix element of which is:

exp (}7 Hot ) [#)k 3o 1) (51 exp (- }—‘,Hoz) DRI

=2 (m|T7 k) exp (—iwut) (k| [ @] T|n) (8.142¢)*

(m|u(@®|n) = Z(m[T—lli)(i
kl

where all but the diagonal elements of Us have disappeared due to the diagonal quality of this matrix and
where oy, = (B, — Ep).

We directly substitute Eq. (8.142¢) into Eq. (8.137) as a typical matrix element of u(t). What we desire
is the element of the product matrix of u(f) and the density matrix. We take the proper element and then
sum over the diagonal elements of this product matrix in order to obtain the desired trace. Finally then:

I(w) = const* @t 3 (a{polb)+f +f dee™ (b T-1(t) | ¢)(c| mo | d) exp (iweat)
abedefo - —®

<@ T@® |e)e] T-E) | N (f o | 8) exp (—iwst) (g] T(t') | @) (8.143)

We might stop to remember at this point that all the operations which have been carried out so far and
all those which will follow are simply for the purpose of transforming Eq. (8.137) into some form which will
tell us explicitly the shift, the shape and the width of the spectrum line which we are to expect.

We now modify Eq. (8.143) by substituting a relation of the form Eq. (8.140) for the density matrix
att = 0, pp = T~'pT and then, substituting the new time development matrix,

T(—t') = T@)T-'(¢)

we obtain a function of the form Tr(T —'Z T) which since we know the trace to be invariant under a similarity
transformation is equivalent to TrZ. Thus, there finally results:

4w 4w ) ,
I(w) = const - o fde fdr'e™"™ Ed (a]p(®) | b)(B]| m|c) exp (—iwpt)

< (c| T=He—t) [d)(d] o | €) exp (—iwad)(e | T(t—t) [a) (8.144)

By using the substitution ¢ = ¢ + 7 Eq. (8.144) may be reexpressed in *Correlation Function
Form't as:

I(w) = w* const T ? dr exp [i(w — wg,)7] as(7) (8.145a)

de -

ae(r) = j]: dt 2 exp [—i(os + wadt] (@l p() DY mol )] T(0) | d)(d|mle)(e| T() |a)  (8.145b)

Up to this point no restrictions on the theory in the form of modifying approximations have been made,
but at this point Anderson found it necessary to introduce the condition which changes the subsequent
treatment into an Interruption type treatment. The assumption to be made is that the time between colli-

* If a;; is an element of A, ctc., we may recall the labelling rule for the multiplication of matrices: (ABCD),, =
Z  an;bjkciidim, and so on for the element in the product matrix for larger products.
skl

t See supra, Chap. 6.

.
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sions is much greater thaun the time of collision. This assumption when applied to a consideration of the
matrix elements of (Us~! H,Uy) leads one to the conclusion that these matrix elements and hence Eq. (8.145hb)
disappear unless:

wpe F wge = 0 (8.146)

and the two frequencies appear to be resonating.

Eq. (8.146), of course, has the advantage of greatly simplifying Eq. (8.145b) by removing the exponen-
tials in question from it. Anderson noted that Eq. (8.145b) had the look of a time average. Let us now
investigate the consequences of this conclusion.

To begin with we specify the density matrix by a typical matrix element as:

(n| pg | m)8umgn exp (—E,/kT) / I gn exp (—E,/kT) (8.147)

This would appear to be the reasonable time to introduce the degenerate indices as well as the explicit
fact that there are two molecules present both of whose states must be considered. Although the electric
dipole moment could refer also to molecule 2 (the perturber) we suppose that it does not so that this operator
is diagonal in the states of the perturber. We then (1) replace the integral in Eq. (8.145b) by an average
(2) replace p(r) by its specific value (3) introduce degenerate indices and (4) recognize the existence of per-
turber and emitter to obtain from Eqs. (8.145):

+o
I= Z‘fw dr exp [i(w;y — w)7] '—1-' Ji | pg | J3)eis(r) (8.148a)

4 8i

M

pi(t) =3 1 (JalplJ) 2 2
J: g Ja MiM;

MMy

” gJiMi g | T My < (UMM | T-(r) | T, MY T2 M)
My

(I My | e | TMO(TME T MY | T(r) | T MJaMo) > e (8.148b)

It is certainly reasonable to suppose that the collisions which the emitter undergoes occur isotropically
insofar as collision direction is concerned. As a censequence the average of T~'g, T will be independent of
the actual placement of the z-axis. We are thus free to conclude that for a rotation of the reference frame
specified by:

M, = 21&,’ + Qzﬁy’ -+ gal_{,' (8-1493)

the average transforms as:
<TpT> = oy <T /' T> + aa<T/T> + as<T-u,T> (8.149b)

go that this average transforms as a vector according to Eq. (3.1). We shall not demonstrate it, but it is
known?® that the matrix elements of this averaged matrix, due to its vector component behavior, are
determined by the transformation property so that we may write:

(JfMjJ2M2 l <T—l“zT> l JfM.Jz'Mz') = (JfM/ | Bz | J"Mo') 5.Ma' 51[;1!{:’ F (T) (8-150)
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The substitution of Eq. (8.150) into Eq. (8.148b) results in:
o) = 2 | UMi] | JMp) |2 F(r) = Tr %] F(r) (8.151)

since the square arises by matrix multiplication definition; the summation over M; cancels the g in the
numerator of Eq. (8.148b) and:

SWhlell) =1
J2

The next step in the solution amounts to determining F(r) from a differential equation for this quantity
which may be obtained. Then from an equation of the form Eq. (6.138) (which we may recall also arose
from a “Correlation Function™ type process) expression for the shift and shape may be obtained.

We now let:

T(r ~ 7 + dr) = T(r + dr)T-(r) (8.152)

and note that, since the collisions are random, the events occurring in the time intervals + and dr are
independent and consequently the TDM’s for these two periods commute. We make the substitution as
indicated by Eq. (8.152), and then utilize Eq. (8.151) to carry through a series of steps quite similar to
those which we have already carried out to finally obtain:

ol + dr) = ZQJ;%I_Q D Tr<i? [T, T2 25 F(r) (8.153)
J2 s Jy’
where: "
[T)*#% = (I M .My | T | J, M T M) (8.154)

We now suppose that different types (this means collisions of different optical collision diameter and
direction) of collisions are designated by different values of &. Now the probability that a collision will
occur during the time interval dr and lie in the type range do is given:

p(do in dr) = Nvdodr (8.155)
Next do(r) is averaged over these collisions as:

de(r) = drNv [ do [o(r + dr) — ()] (8.156)

A substitution may be made for dyp(7) from Eq. (8.151) for ¢(7), and from.Eq. (8.153a) for o(r + dr).
These substitutions result in the differential equation for F(r):
d

F(r) = —NuvoF(7) (8.157a)
dr

where:

(leplfz) . -1 I K W2,
¢ = f do [1 - 2 ) JZ Tr [0 { T do) 27 T(de) m]} (8.157h)

Js gJ
Tr [I‘z‘, I‘zﬁ]

or, with 1 =JE (Jolp ] o)t o = JE (Je I P | J2)oy, (8.157¢)

Fr.
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where:
E, Tr [“zf/ { T—l(do.) }/2.//’2’ “’ﬁ { T(dv) } u'2',|‘2]
as = /(10 1 -1 — (8.157d)
enTr [u" |
The solution of Eq. (8.157a) is:
F(r) = e (8.158a)
where:
¢ = o, + io; (8.158b)

In order to obtain the intensity distribution in the broadened spectral line we substitute Eqs. (8.158a)
and (8.151) into Eq. (8.148a). Integration subsequently yields:

JilelJ) Nve,
(@) = JilelJs) JMip, |\ M 8.159)
(@ Zf - %{4( e LI M e

From Eq. (8.159) we may immediately obtain the line half-width and shift as:

é = M oy cm™! (8.160a)
nc
D=-NM, em (8.160b)
2me

It would now appear that were ¢ in a form which was amenable to calculation the problem would be
essentially solved, and indeed this remains the major step to solution.

By a series of manipulations involving vector addition coefficients and certain relations among them*
the traces in Eq. (8.157d) may be evaluated. Choosing the axis of quantization (simply the axis along which
the spatial degeneracy parameter M has meaning) so that it ceincides with the z-axis allows the expression
of the trace in the denominator of Eq. (8.157d) in terms of these vector addition coefficients and the subse-
quent evaluation of this trace.

In evaluating the trace in the numerator a few preliminary considerations are requisite. This trace
contains the matrix T — and its inverse, of course — so that for a given optical collision diameter p this trace
must needs be averaged over all directions.f Now the trace is independent of the axis of quantization,
however, so that the axis of quantization may be taken along the optical collision diameter and the trace
subsequently averaged over all directions, of this axis which we have specified as along the z-axis. The
averaged trace in question may be calculated with the result that Eq. (8.157d) takes the form:

oy, = 6" 2xpdp S(p) (8.161a)
Z (JAMM | JAT M) (JAM/M | J YT M)
Slp) =1 — %}A%%{ Iy RL+1D @R+

- (JIM M, | T-1(p)| J/MfIJz'Mz")(J;M;'Jz'Mz’) | Tlp) | J:M J:M) (8.161b)

* These cocfficients are described in detail in Chapter III of Reference 205 and it would not appear of any value for us to
go into the detail required for their discussion heré.
} Jablonski would undoubtedly object to this inferred (but unstated) assumption of rectilinear motion.
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where the first two symbols on the right of Eq. (8.161b) are vector addition coefficients. The differential do
which indicates a certain range of optical collision diameter and optical collision diameter direction has been
replaced by 2#pdp since S(p) has already been averaged over various collision directions.

The next step in carrying out a calculation of ¢ is the computation of T, and a successive approximation
procedure has been used where, to begin with:

T=T+Ti+Th...; T,=1 (8.162a)
so that, from Eq. (8.140a):
¢
o = - & [ wrnpu e (8.162b)
H ¢
T = - )1;, / (UM, () Up)dt f (UH, (") Up)de” (8.162¢)

As we have mentioned in connection with Eq. (8.139), if H, commutes with itself at different times then
. t
T(t) = exp [— ,7:7 / (Us™H () Uy)de ] (8.163)

and Egs. (8.162) would simply be‘the power series expansion for the exponential in Eq. (8.163). It so
happens that H; does not so commute, but Anderson has carried out calculations which tend to indicate
that the assumption of this commutation proves a good approximation. As a consequence then, if we take
only the first three terms in the expansion of Eq. (8.163) there results for T:

T@p) = To+ T+ T

F = 1; T = —iP,; T, = §I2 (8.164a)
]+
where: P = ; J (U,tHUpde (8.164b)

An approximation type solution for S(p) may now be carried out:
S=8+S+8S&+.... (8.165a)

where the successive approximations to S arise from successive powers of the P matrix (Eq. (6.164)) in
Eq. (8.161b). T, = P? yields:

Salo) = 0 (8.165b)

In the first-order approximation to S(p)T,~*, Ty and T,, Ty~ both contribute to the result:

Sip) = i [ (MM | P | I MM, Z (JMJsMy | P | J,M,J,M,)] (8.165¢)

MM, (2-15 + 1) (2-,2 + 1) MMy (2.,/ + 1) (2], + 1)

-
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For the second order approximation the possibilities T;™2, T, and T),, T, yield:

_ (JM M, | Pt I M M) | (IM M, | P2\ T M I M)
Sz(P)outer = %[;. (21’ + 1) (2]2 + ]_) + MIZM: (2}/ + 1) (2]3 -+ 1)

] (8.165d)

while Ty, T; result in:

> JAMM | IAIWM) TAMM | JATMY) (g g g0, | P I MY IME)

SiPImiae = | £, Lo @i+ 1) @h+1)
MMMy
(M MY | P J M JM,) (8.165¢)
so that:
SZ(P) = Sz(p)ouver + SZ(P)middle (8'165f)

In Egs. (8.165) we note that a summation over J,' not occurring in Anderson’s Eqs. (54) is present.
This is due to the fact that Anderson had assumed T as diagonal in J;. This is certainly true if (a) T causes
no transitions among the nondegenerate states of the perturber or (b) changes in the quantum numbers of
the perturber may only occur simultaneously with changes in that of the emitter. This latter corresponds
to the resonance effect, of course. Under these assumptions we may drop this summation.

Let us also notice that 5;(p) contributes only toward line shift while the S;(p) contributes only to line
breadth, not that these facts should prove startling,

The theory in general form is now complete and stands ready to be applied, but before we go into Ander-
son’s applications of it to actual cases, let us consider some necessary restrictions to it, a summarization of its
development, and the approximations contained within it.

As has heen the case with the varied and sundry theories which we have considered, the theory breaks
down for small values of p. This transpires in the following manner. H, in Eq. (8.164b) depends — for
the dipole-dipole interaction which is the only one which Anderson considered* — on r? in first order
and r~¢ in second order. This means that for sufficiently small r, P will become as large as you like. The
expansion of S in terms of P, Eq. (8.165a), is only valid, however, forsmall P. Thusdoes the theory, through
S, break down for small p. Anderson treats this in a manner which we may now detail.

To begin with Anderson assumed that for very small values of p the collisions are so strong that they
terminate the radiation by causing the molecule to proceed to some different nondegenerate state or when
the molecule remains in the same state they result in an arbitrary phase shift that averages to zero. In
either case then Eq. (8.161b) contains only the first term unity, so that while S:(p) is given by Eq. (8.165f)
for values of p greater than p; where Sx(p;) = 1, it is simply given by one for lesser values of p.

Anderson also tried two other approximations for S(p), namely:

Sti(p) = 1 — cos (285:(p))**
wd Su) = 1 = exp (~25:(p)

These three possibilities for S; are illustrated in Fig. (8.14), and we might note here that Anderson found
the best agreement with experiment to arise from Syz.

* Tsao and Curnutte!® have also considered dipole-quadrapole and quadrapole-quadrapole interaction within the frame.
work of the Anderson theory.
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Let us obtain Anderson’s ‘‘region of resonance pavameter” k. Now if H, = Kr~? or Kr—% and (the
rectilinear assumption) r* = p? 4 v%?

+o
(a| P|b) = _f deexp (iwgyt) (a | Hi(t) | b) = K [ deexp (iwgpt) (o + vi2)~3/2r 3

= [ e ()i (8.1662)
pvor pv
where: x= L k= Mo (8.166b)
p v

The parameter k tells us whether the molecules have undergone fast collisions and/or whether the w,,
perhaps refers to degenerate levels. Either of the two integrals appearing in Eq. (8.166b) has about the
same value for values of k up to about one as it has for k zero. Within this region then (0 < k < 1) transi-
tions will occur between the states @ and b as though these two states were resonant (or degenerate). Ander-
son explains this by an appeal to the uncertainty principle. For k < 1 the velocity may be supposed suffi-
ciently high that, with At the time of collision, there will be an uncertainty in energy (from AEA: > k) such
that w, acts as though it were negligible, this in turn means that the two states in question act as if they were
resonant.

Let us now rapidly review the major facets of the Anderson theory. We began with the expression
Eq. (8.137) for the intensity distribution in the broadened line which we only approximately justified but
which has been justified in some detail by Anderson as well as later authors.!? We then obtained from the
time development matrix defined by Eq. (8.139) a modified time development matrix, which proves mathe-
matically more convenient, as given by Eq. (8.141a). A few straightforward, mathematical manipulations
were carried out to obtain Eq. (8.145b) at which point one of the oft used approximations of the Interruption
theory was introduced, namely, (A) THE DURATION OF THE COLLISION IS VERY SHORT COMPARED TO THE
INTERVAL BETWEEN COLLISIONS. By this time the intensity integral had been written in Correlation Func-
tion Form. The Maxwell-Boltzmann form of the density matrix was introduced and the approximations of
(B) BINARY coLLISIONS was introduced. This led to Eqs. (8.148). The fact that collisions may certainly
be expected to occur isotropically allows us to obtain relations of the form Eq. (8.150) which yield further
simplifications. Additional manipulations yield Eqgs. (8.157) and (8.158) for the quantity F(r), which, when
obtained, may be utilized in Eq. (8.148a) to obtain Eqs. (8.159) and (8.160) for the line shape, width, and
ghift. We may note here the decrease of the intensity with the inverse square of the frequency separation
from line center which is certainly not generally correct.

In evaluating ¢ an expansion for T was utilized, This required the approximation of a (¢) miNMUM
DISTANCE OF APPROACH OF THE COLLIDING PARTICLES,

At any rate, ¢ was obtained in terms of S(p), an expansion whose third term, S,, as given by Eq. (8.165)
contributes only to the line width and whose second term, S;, as given by Eqs. (8.165), contributes only to
the line shift. Thus, when one has computed P from Eq. (8.164b) and subsequently S; and S; from Eqgs.
(8.165) the shift and shape may be computed from Eq. (8.161a) and (8.157¢). Also included in the develop-
ment was the approximation of (D) A cLAsSICAL PATH. Let us touch on these four approximations briefly.

Insofar as (A) is concerned only Lindholm and Lenz of the Interruption writers had failed to include
this, and we might recall that Lindholm showed his ability to obtain Lenz’s result without considering the
time of collision. His more refined treatment did very definitely include it, and, it might be added, he

Ao
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obtained more “‘variety” in his line shape equations as a consequence. Approximation (B) is also a rather
common one, but we have noted in Sec. 18 the manner in which in the statistical theory the progression
toward larger numbers of interacting particles in the theory seems to point toward better agreement with
theory. Approximation (C) has been used without any exceptions that come to mind. Approximation (D)
has been used in all cases except in the work of Jablonski.

Let us now give Anderson’s specific treatment of the ammonia inversion line as an example of the

application of the theory.

8.19. SOME APPLICATIONS OF ANDERSON'S THEORY

A brief consideration of Arderson’s calculations with regard to ammonia will not only serve to illustrate
the application of his theory, but will also tend to indicate its agreement with experiment so we now consider
this application.

We will consider the self broadening of the inversion line which we have already considered according
to Margenau’s statistical theory method. This appears to be a very popular transition. To begin with
S2(p) middles the ** ‘difficult’ term™ vanishes in this problem.

We consider the inversion doubled levels of the symmetric top under the interaction potential:

H= [gl -3 (ﬁ_‘_’_)-'_g-’fi_'_)J s (8.167)

the familiar dipole-dipole interaction. The polar axis of coordinates is taken as the optical collision diameter
to which the polar coordinates ¢, 95, y; and ¢, are referred. We designate tan—* ((v£)/(p)) as the angle ¢.
Eq. (8.167) may now be expressed in terms of these angular coordinates, and certain of the matrix elements
of the symmetric top provide the matrix elements of the resulting equation.

There are now essentially two types of interaction matrix elements involved in the expression for P,
Eq. (8.164b), namely, (1) the first order Stark effect where collisions between molecules having the same
J values are considered and (2) the case of rotational resonance where the J values for the colliding molecules
differ by +1.

Now let us evaluate k, the resonance region parameter. To begin with we suppose that both molecules
are either in the plus inversion state or the minus. Then for both of them to undergo a transition to the other
inversion state, an energy change of abouat 1.6 cm.— is called for. The mean velocity here is about 8 x 10
go that according to Eq. (8.166b)

Ee 2 o p(A)x103x3x1.6x108x2

- ~ () x 0.035
v 8 x 104 p(d) x

which we shall subsequently make use of.

Next we wish to evaluate P as given by Eq. (8.164b) or (8.166a). If one molecule is in a plus inversion
state and the other in a minus we can have true resonance and neglect the exponential time factor. If the
optical collision diameter is less than 154 according to the above k calculation the pseudo resonance situation
will arise and we may still neglect the exponential factor, As a consequence of this situation I, may be
integrated before the matrix elements of it are taken to obtain P. If we let:

r? = p? 4 v%?go that: cos ¥ = p/r ; siny = ut/r
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we may obtain:

+®
Hdt 22
/ -jl{— = ;2—'-:)—/-( [—cos ¢ cos 95 — sin &, sin J; sin @1 8in ) (8.168)
-0

The S; sums may now be computed according to Eq. (8.168) with the result:

8 ”4 KIZK 2

S:(J:Ks) = — 2
) = S TG D ARG T D (8.169)

for the case J; = J;, and:
_ 8 u (Ji2-KP(J2 - K

S2 J - 19 K = - )
Wi VTG R IRGh T D) L= 1) (8.169b)
Sz(]x + 1’ Kz) — i l“ [(Jl + 1)2 - Klz:' [(-Il + 1)2 _ Kzzl (8.1690)

9 ¥ (L + 1) QL+ 1) )+ 3)

for the case J» = J; £ 1.

We are evaluating Eq. (8.165d) which we now consider. Now neither in this consideration of ammonia
nor in subsequent considerations of HCN and HCl does Anderson consider the Alignment Forces* since,
according to this author, ““ ... the sums required become quite difficult for the second-order alignment
forces.”

If the abbreviation:
S(Jz Kz) = A%/pt (8.170)

is used, there results for the three approximate forms of S:

#l. 01(J2,Kz) = ps(Jo, Kz) 2 (L.114) (8.171a)
#2. 02(J2,K2) = p3(J2,K) 274 (8.171h)
#3. 03(J2.Kz) = ps(Js, Ki) 27 (0.8854) (8.171¢)

in the evaluation of which from Eq. (8.161a) the method of Jensent was used.
Finally one obtains:

o =J§n¢7 (Jsz) (8.172&)
8 =2 5 em— (8.172b)
xc

from Eqs. (8.157c) and (8.160a) respectively.
Anderson presented two types of comparison with experiment, both of which are rather impressive in
this case. The first type is a comparison of the absolute widtk of the line as measured and as computed with

* See supra, Sec. 3.
t See supra, Chap. 6.
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this theory. The line used was the inversion line having rotational quantum numbers J; = 3 and K; = 3
for which there should be negligible rotational resonance so that Egs. (8.169b) and (8.169¢c) may be neglected.
Under these conditions the results of Table (8.5) are obtained where the experimental data is that of Bleaney

and Penrose.2

Theory Experiment

Approx. #1 #2 #3
36 0.86 0.77 0.68 cm. ! atm.™? 0.74

Table (8.5) A comparison of an absolute width by the Anderson theory with experiment. (After Anderson.?)

Finally a comparison of the relative line breadths with experiment!®' is made in which the theoretical
value for J = 33 is made to agree with the experimental for normalization purposes. The results are given
in Table (8.6).

J K Theory Experiment
2 1 2.6 2.6
3 1 2.3 2.4
3 2 33 3.2
3 3 4.5 4.5
4 4 4.6 4.5
5 1 1.8 1.8
5 2 2.5 2.6
5 3 3.3 3.3
5 5 4.8 4.7
6 3 2.8 3.1
6 4 3.5 3.6
6 6 4.8 4.7
7 5 3.7 4.1
7 6 4.3 3.9
8 7 43 4.1
10 9 4.5 4.2
11 9 4.1 29

Table (8.6). Comparison of the relative widths. Data were in cm.~! X 104 at
0.5mm. Hg. (After Anderson.?)

Anderson also considered the self-broadening of HCN and HCI and the foreign gas broadening by
several molecules. The HCN results are given in Fig. (8.14) in comparison with those earlier results of
Lindholm and Foley. He reported his agreement as fair in the case of HCI which to the author in question
meant 30%,. Insofar as his foreign gas broadening results are concerned we shall let the author describe
them* ‘““We do not present this evaluation because the results, in general, do not have any relation to

3

experimental results.

* We recall that bere Anderson has utilized only the dipole-dipole interaction. In a later consideration of the broadening
of ammonia by foreign gases'® he included also the interaction between the quadrapole moment of ammonia and the induced
dipole moment of the broadening atoms with a resulting agreement which was quite good.
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This then is the agreement of the Anderson theory with the experimental results, certainly quite impres.
sive for ammonia. It is not quite as impressive for HCN since the author found it necessary to simply
borrow Lindholm’s results for the Alignment Forces due to the difficulty involved in evaluation according
to his theory even though his final results were quite good. For HCI and foreign gas broadening the impres-
sivity continues to decrease.

“Elegance™ (in several connotations) is present in this theory in abundance, but “simplicity” would
certainly appear to be lacking, and it appears that the theory may be rather restricted thereby. One dis-
appointing feature of this theory is the rigid requirement of an inverse dependence of the intensity on the
inverse square of the frequency separation from line center. This is certainly not true in all cases, not even
for polyatomic molecules.

8.20. ANOTHER ADIABATIC THEORY

We shall now conclude this chapter with a brief consideration of an adiabatic theory due to Mizushima.'¥
Commencing with the Hamiltonian-

H, + H, + H,, + H,
with which we are quite familiar, Mizushima eliminates the nonadiabaticity from the state growth equation:

., 0 oy 0
ith —a—‘ a; = Z(H lﬂ ;;)j.' a;

by eliminating the partial time derivative on the right hand side of this equation. Subsequently a series of
unitary transformations yields, for the author, the “generalized fourier integral formula.” By assuming T*
— the matrix diagonalizing H, -+ H, + H,; — Mizushima obtained an expression which when integrated
yields the Weisskopf result.

We have already noted in connection with Foley’s theory* that Mizushima disagreed with the Foley
procedure and finally obtained instead of the Foley result:

8
I = £ 6.137a’
¢ * (v — v ~ AP & (6.137a’)
8 = [ F(p) (1 — cos a,)dp/2r (6.137b%)
A= f F(p) sin a,dp/2x (6.137¢)
a=f éhl’- dt (8.173)
The number of collisions with collision diameters between p and p*-+ dp per unit time is given by:
—f m\32
F(s)ds = 8Vr (éﬁ‘) exp (—mv*/2kT)v’dvpdp GN (8.174)

Let us consider this expression at sufficient length for justification. To begin with the factors preceding
dv constitute nothing more nor less than the Maxwell-Boltzmann probability expression for the velocity
having value betweenvand v + dv. The term pdp is the probability for the occurrence of the optical collision
diameter between a p and p + dp, a simple enough expression since we assume random probability. Finally

* See supra, Chap. 6.

F.
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the expression G for the probability for the occurrence of a given rotational state will be given by a weighted

Maxwell-Boltzmann function of the form, say, Eq. (8.77).

The materials are now at hand for an evaluation of the shift and shape according to this theory.
Mizushima carries out this evaluation for (a) a well type potential and (b) an inverse power potential. For

the well type:
Ap = yforr <a ; Ap = O forr> a
2(a? — P2 y/oR

so that: @
Eqs. (6.137) give then:

4 3/
smrocon— () [ (- 3)

1]

. {(a_‘% o (222 4 [=(55) -1 } i

X 2

sin (27{1") 9
ae va¢
C el = —Z o8 (=) do
{ 4t 29K ( )}
For the case y = <
b = }a*<v>Nand A =0

For the inverse power potential:

b1

so that:
4o

Y .
(7 + ve)
—w
Ap D(n — 1)2°—"
n—1 *
v [T (n/2)]t
Egs. (8.174) and (8.181) subsequently lead to:

(0—n}/(2n—-2) (3~n)/(2n-2) _ —
I e
2 2m n—1 -1

N In - D el { n—3 2/n=1
[{r (n/2))z] sin 1‘2————n_2}<|Apl SN

A=mn(-_-_’ )s< =
n—1 | Au |

(8.175)
(8.176)

(8.177)

(8.178)

(8.179)

(8.180)

(8.181)

(8.182)

(8.183)

[
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Eq. (8.182) leads to the following specializations for three of the most important interactions:

6=—;—<]Aﬂ|>N for n=3 (8.184a)
2 7\ (kT\4 ‘

=2 (L) E) <|ap|m>N f =5 8.184b
V3 <4>(M> 4] o ( )

/
5 = J..(’if)” o (3) r <i) _1?_}2 * sin (‘92) <|AufS SN for n=6 (8.184)
o\ M 5) \5) @) 10

If the sign of Au is common to all collisions we will obtain Foley’s Eq. (6.145) for the ratio between shift
and width from the present theory. The converse of this can be seen, for example, for the case in which the
average value of this quantity is zero and no shift results.

In applying the equations obtained above for the shift and width of the speciral line according to this
adiabatic theory, the task, of course, becomes one of evaluating the matrix elements of the intermolecular
interaction in order to obtain the values of Ax which must be used in these evaluations,

(A) ApiaBaticrTy and (B) WEAK INTERACTIONS were perhaps the most important assumptions of
this section. No binary assumption has been made as yet for example but it would probably have to be
made during the interaction matrix elements evaluation.

o
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CHAPTER 9.
THE BROADENING AND SHIFT OF THE HIGH SERIES MEMBERS

The foreign gas broadening theories which we have considered previously have all been amenable to a
more or less tenuous association with the labels Interruption or Statistical. Although we have devoted a
separate chapter to it, this association also holds for the Stark theory. The theory which we are now to
consider might, by rather stretching a point, be labeled pseudo-Statistical, but, since the general principles
of it are sufficiently unique, let us not attempt to so classify it. In all the theories considered we have been
able to suppose the molecule, whose spectral lines were being broadened, as an entity of itself which was
affected from without by one or a combination of broadening molecules. The theory which we are about
to examine proves quite different from this, however.

9.1. A QUALITATIVE EXPLANATION OF THE HIGH SERIES SHIFT

The indication that the higher series members should be treated any differently from any other spectral
lines was quite clearly given in the results which were obtained by Amaldi and Segre'? for the shift and
broadening of the spectral lines of the two alkali atoms, sodium and potassium, by H,, N,, He and A.

Let us recall that when we speak of the higher series members we refer to spectral lines which arise from
transitions from photoelectron states of high principal quantum number n. In the conceptual language of
the Bohr theory this means that the orbit of the photoelectron is at a great distance from the atomic nucleus,
in fact, for principal quantum number 30 the radius of the Bohr orbit is around 500A. The size of this orbit
— or any other high n orbit — is the basis which Fermi used for the theory by means of which he sought to
explain the anomalies which Amaldi and Segre found in their high series spectra, namely: (1) The spectral
line shift increases as the series member increases, that is, the shift increases for upper states with higher n.
(2) As the order of the upper state continues to increase the line shift appears to converge toward a value
which is approximately proportional to the pressure. (3) The magnitude of the shift was found to be the
same for the spectral lines of sodium and potassium. (4) The amount and direction (violet or red) appear
to depend on the nature of the foreign broadening gas. Qualitatively Fermi explained these results, or some
of them, as follows:

To begin with only those electron orbits will be treated which are of sufficient radius to include within
the spheres corresponding to them several thousand foreign gas atoms. It is precisely this orbit size which
forms the basis for the present treatment. In the case n = 30 of the last paragraph there are, at atmospheric
pressure, 30,000 atoms within the orbit.* In addition the velocity of the electron at these distances from
its nucleus is low. The picture that then presents itself, and which is all important to the theory, is that of
the photoelectron moving slowly through the atoms of the foreign gas. From this picture Fermi evolved
two co-acting methods by which the lines are broadened,

* Quite often nannies and kids are pastured separately for reasons which need not concern us. In the evening when the
kids and their maternal ancestors are again placed in the same corral it is most impressive to watch a nanny rapidly and unerr-
ingly pick her offspring from among hundreds of other and apparently identical kids while refusing to be cozened by the younger
members of other families. Although impressive, we must admit that this cannot hold a candle to the selectivity of the electron
and nucleus to which we refer.
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(a) The Polarization Effect. As we are well aware the electrons in an atom may be considered as
arranged in shells around the nucleus with a sufficient number of shells filled so that the positive charge of
the nucleus is screened or counteracted in such a manner that no electric field will arise due to the nuclear
charge. Now when we move the photoelectron out to such a distance that one or more atoms are either at
the same or lesser distance from the nucleus, the shielding effect of this electron will be absent insofar as these
atoms are concerned. As a consequence these atoms will be under the influence of a field of an ion of charge e.
We shall assume that they are not possessed of a permanent dipole, but an interaction between the dipole
induced on these atoms and the electric field will occur. The energy of this interaction can only arise from
one place, and that is the emitting atom. The result is that the energies of the energy levels of the atom are
lowered by the amount contributed to this interaction. In toto then the emitted spectral line is shifted
to the red as a result of the Polarization Effect.

(b) The Potential Valley Effect. We have considered an interaction between the partially unscreened
nucleus and the broadeners, and now we consider the interaction between the photoelectron and the broaden-
ers. Fermi considered the broadeners as effectively scattering potential valleys along the flight path of the
photoelectron. These valleys would not be large in extent, however, since the atoms causing them are
neutral. Quite obviously these valleys will have some effect on the energies of the electron, and we shall
gee that (1) the line shift resulting may be either to the red or the violet and (2) the magnitude is always
greater than that of the Polarization Effect.

9.2. THE POLARIZATION EFFECT

Let us first consider one of the many foreign gas atoms contained within the orbit of the photoelectron
and hence acted on by the field of a charge e. If the separation of this atom from the center of the emitting

atom is r;, then the field in which this atorn finds itself is L.
r,-’
We now make our first assumption, namely, (A) THE BROADENERS POSSESS NO PERMANENT DIPOLES.
If, as usual, we take the polarizability as c, then the interaction energy will be given by — } aE*= — }ae? 1
. . LE
so that the total energy shift resulting may be found by summing over all atoms within the orbit as:

AE = - -—Z - ©.1)

Very little error is introduced by extending this sum over all perturbers (this arises from the rapid
convergence of r;*) so we do precisely this.

Now the spectral line may be supposed shifted by the same amount as the upper level since we may
imagine this effect as not present for the lower level involved in the transition. The shift of the line intensity
maximum due to the effect under consideration may then be taken as the energy perturbation resulting from
the most probable perturber configuration. This most probable configuration is a uniform distribution of the

. . 4 1
perturbers, with the vearest one a distance 3 ~Re = N where now the volumes of the individual perturbers

of size 1/N are distributed in spherical shells. In order to find the value of the summation over r, then
we simply replace the summation in Eq. (9.1) by an integration of lower limit r; with the result:

ridr
4N/——_4_t{.v 9.2)
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Eq. (9.2) may pow be substituted into Eq. (9.1) to obtain:

AE = —10 e2alN*3 ergs = —2.8 x 10*(¢ — 1) N2 sec™? = +. 00093(e — 1)/N'* cm™ 9.3)
according to Eq. (7.41b) under the standard assumption ¢ = 1. The symbol ¢ represents the dielectric
constant of the foreign gas.

Eq. (9.3) yields a shift of about a reciprocal centimeter for a foreign gas pressure of one atmosphere.

9,3. THE POTENTIAL VALLEY EFFECT

In taking up this second effect let us first introduce the assumption (B) THE MOLECULES ARE MONATOMIC.
This will tend to restrict the theory, but it will be important in the proof.

We wish to set up the Schrodinger equation for the photoelectron. First then we are in need of a poten-
tial function which conveniently presents itself as a sum of the potential due to the remainder of the emitter
(excluding the photoelectron) U, and the potential due to all broadeners present, £ V. Now the de Broglie

+

wavelength* of our earlier example — the atom with an n of 30 — is in the neighborhood of 100A. The per-

turbing atoms’ potential ¥; will be of limited extent — and spherical symmetry — since the atoms are

neutral, however, so that the de Broglie wavelength will be large compared to the spatial extent of the V.
Our Schrodinger equation will then be:

Vi +I E- V-2V =0 9.4

Next a function, <y >, is defined which is the space average of the eigenfunction of Eq. (9.4) in a
domain of small extent compared to the de Broglie wavelength but sufficiently large to contain a goodly
number of perturbers. The potential U will surely be about constant in such a region, and we shall so con-
sider it. The function which we have defined satisfies the equation:

Vi<y> + j%‘ [E-U] <y> - 2 <z vu> =0 9.5)
3

#

We are now faced with the problem of computing <X ¥, ¥ > which may be accomplished in the follow-
ing approximate manner. '

Since the remainder of the atom is some hundreds of angstroms away, we may expect E — U to be
sufficiently small so that it may be neglected in comparison to V; in a smalil region about the i-th perturber.
In addition we have supposed our broadeners in a spherically symmetric state so that the potential will be
simply a function of r, measured, of course, from the perturber center. Consequently V; = V,(r), and the
Schrodinger equation takes the approximate form:

2m (9-6a)
vy ==y,
¥ )" 14

When we set ¢ = u(r)/r, this becomes:
2m
u’ =~—~V;u 9.6b)
W (9.6b)

In that part of space sufficiently far removed from the perturber, ¢ will tend toward the average value
<y > which we have already defined. On the other hand the solution to Eq. (9.6b) at a position far from
the potential valley of the perturber is:

u=c+ ar (9.7a)

* It may be remembered that the de Broglie wavelength of a particle is related to the linear momentum of the particle
by the relation: b/A = p.
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Since y is tending toward <y > at great distance; c; is given by <y > since u(r) = ry. There can be
no objection to replacing the constant ¢; by the constant a <y>, so that Eq. (9.7) becomes:

u=(a+rnN<y> (9.7b)
and the significance of a is apparent from Fig. (9.1).
We now integrate Eqs. (9.6) with the result:

23? S Vydr = 4« i—g— S Vurdr = 4= [ u"'rdr
=4nlur—ul|y = —4dra<y> (9.8)

where the final evaluation is obtained directly from Eq. (9.7b).
Eq. (9.8) leads directly to:

%}{2@<>; Viv> = —dmaN<y> (9.9)
Eq. (9.9) may now be substituted into Eq. (9.5) to obtain:
2
Vi<y> + F’" [E,— U] <y> =0 (9.10)
2
where: E = E 4 YN (9.11)
2mm

Eq. (9.10) is the Schrodinger equation for the emitting atom — considered as central core plus photo-
electron — when the perturbing foreign gas atoms are not present, Thus, E, will take on the various values
of the unperturbed atom energies. Since E'is the energy of the perturbed atom, it will, according to Eq. (9.11),
differ from the unperturbed energy by amount:

2,
AE = — h*aN

2rm

(9.12)

It is apparent from Eq. (9.12) that the direction of level and line shift will depend on the sign of the
quantity a. The problem is essentially solved then if some further information about the constant a can be
obtained. Fermi was able to obtain an approximate value for the magnitude of this factor — not the sign —
by beginning with Wentzel’s expression'* for the collisional cross section for very slow electrons on the foreign
gas atoms:

¥,
g = — s&n To (9.13)
P
where p is the electronic linear momentum, and T, is the phase change occurring in the matter waves asso-
ciated with the electron due to the perturber valley. Since the sign is equal to its argument for very small p:

T = —h”~ 7o (9.14)

We may obtain an alternate expression for the phase change by a study of Fig. (9.1). A consideration
of this figure is sufficient to tell us that the matter wave of the electron has suffered a phase change of a A
wavelengths after having undergone the influence of one of the potential valleys. It follows then that:
T
a/\ = o (9.15)

We substitute Eq. (9.15) into Eq. (9.14) to obtain:
o = 4ra® (9.16)
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which may be utilized for the magnitude of a in Eq. (9.12), but, as we have noted earlier, which tells us
nothing about the sign, and hence nothing about the direction of the shift.

Finally, Fermi added the effect of Sec. 2 as given by Eq. (9.3) to Eq. (9.12) to obtain, as the overall
shift due to the interactions of this and the preceding sections:

A= —28x107(e — )NV 4 0.330'2N 5.17)

Eq. (9.17) is valid then for (C) FOR PRESSURES HIGE ENOUGH SO THAT SEVERAL ATOMS WILL BE FOUND
IN A CUBE OF SIDE THE DE BRGGLIE WAVELENGTH OF THE ELECTRON AND LOW ENOUGH SO THEIR SEPARATION
IS MUCH GREATER THAN THEIR RADIUS OR THE RADIUS OF THE COLLISIONAL CROSS SZCTION. On this basis
Fermi set the minimurn pressure at about one atmosphere.

Fermi considered the broadening of the high series members very briefly, although it is directly apparent
that the same phenomena will lead to broadening as led to shift. By a rather qualitative line of reasoning
he gave as the width due to the Polarization Effect Eq. (9.3). It might also be of some interest to obtain
his result for the highest order line appearing. The premise here is that in order for a line to be distinct the
free path of the photoelectren must be sufficiently long that said electron is given the opportunity of com-
pleting several circuits of its orbit. If o is the collisional cross section for the electron on the foreign gas
atoms, we will readily concede that the free path is given by:

l=1/oN 9.18)
and the orbit circumference may be approximated by:
4ron? (9.19)

where r; is the radius of the first Bohr orbit.
Then our condition fcr distinctness of lines leads to the relation:
1
4ron? < ——
’ oN

from which we conclude that the highest principal quantum number specifying the upper state of a spectral
line is given by:
1

2VreN
As Fermi noted, however, one may not be able to observe quite this high order a line since other causes

ny = (9.20)

of broadening will further affect the line distinctness.

9.4. AXIALLY SYMMETRIC BROADENERS AND THE SHIFT DIRECTION

Reinsberg next considered the high series shift problem'* under the same basic assumptions as Fermi
had first stated. Insofar as the actual treatment which he gave the problem was concerned, his work was
about the equivalent of Fermi’s for the spherically symmetric broadeners. This, of course, resuited in his
obtaining Fermi’s earlier results for this case with one magnitudewise minor but otherwise important differ-
ence which we shall note in due course.

From Eqs. (9.5) and (9.6) Reinsberg obtained instead of Eq. (9.6):

Vi + 2}{2’3 [E-V]¢=0 (9.20a)

2m 0

2m
Vi<y> + —E<y> — — <Vy> = (9.20b)
M »

e
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where all symbols continue to have the meaning previously ascribed to them.
The undisturbed solution of:

Vo + %"__:' Eyo =0 (9.21)

will aleo be useful. For the same reasons leading to the choice in Eqs. (9.6) a first approximation to  and y°
may be taken as u(r)/r and u’(r)/r respectively. There then results for Eq. (9.20a) and (9.21):

w + T E— Vyu=0 (9.22a)
|
u”’ + g;—: Eu® = (9.22b)
Clearly, the solution to Eq. (9.22b) is:
4w = 4 sin 12—'!'—{3 r (9.23)

Now for very large r, V,(r) goes to zero, and, since this potential constitutes the only difference between
Eqs. (9.22), the solutions to these two equations may surely only differ by an amplitude factor and a phase
factor. Thus, there results from Eq. (9.23):

V2mE )

u = aoA sin (T r + Tﬂ (9-24'8.)

or, since sin (a + b) = cos a - cos b (tan a + tan b) and p is presumed very small, Eq. (9.24a) may be
approximated as:

u = A

“i"E cos To [ r+ tan To] (9.24b)

VemE
since in this case cos ¢ = 1 and tan @ = sin a = a for a quite small.
Now in place of Eq. (9.7b) we obtain, after a solution exactly coinciding to Eqs. (9.6):

tan T, + r) <y¢> (9.25)

[

w=( v
VomE
A comparison of Eq. (9.25) with Eq. (9.7b) tells us the most important relation to be obtained here:

A
= —=—= 1 8
¢ V2mE tan o (9.26)

The reason for the importance of this expression as opposed to an analogous expression obtained from
Eqgs. (9.13) and (9.16) is that here a possibility exists for obtaining different signs for a for different values of
the phase shift To. One further point should be made. The equation obtained for a from Egs. (9.13) and
(9.16) must be expected to agree with Eq. (9.26), and let us remark that they will so agree for small linear
momentum (slow electrons). Ty can be expected to differ but litile from some integral multiple of ». In
consequence the sine and tangent are about equal.

Reinsberg treated the case of the axially symmetric broadener by setting the problem up in ellipsoidal
coordinates and solving the resulting Schrodinger equation by a method quite similar to that which we have
used in this and the previous section for the spherically symmetric perturber. The shift is found to be that
of the spherically symmetric molecule, namely, Eq. (9.12) with a given by Eq. (9.26). Now the matter of
shift direction may more conveniently be considered for application. to either type broadener,




290

The particular phenomenon of slow electron deflection by the noble gases had been investigated in
considerable detail by Ramsauer.* Faxen and Holtsmark®® had treated the situation theoretically from the
quantum mechanical point of view, and, finally, Holtsmark®® 7 and Heuneberg® had furnished the resuits
of which we shall make specific use.

Firstly Heuneberg had shown that for medium and high velocities the phase constant increases monotoni-
cally with decreasing electron velovities. Holtsmark carried his considerations of the problem to much lower
velocities and determined that the phase shift must needs proceed to multiples of = unless, as may possibly
occur, Tq has already attained the limiting value for infinitely small velocities for some small value of the
electronic energy. This means that the phase shift has a maximum and the Ramsauer cross section has a
maximum as indicated by Fig. (9.2). Now for this case, since in this limiting case Ty approaches some multiple

of x, the phase change becomes equal to kx + 8 where 0 < 8 < l2r— . This means that tan T, occurring

in Eq. (9.26) must be positive so that a is positive, and the line shift as given by Eq. (9.11) is to the red.

Thus, IF THE RAMSAUER CROSS SECTION FOR THE BROADENING GAS FOR LOW ELECTRON VELOCITIES HAS
A MINIMUM THE SPECTRAL LINE IS SHIFTED TOWARD THE RED AND IF THIS CROSS SECTION HAS NO MINIMUM
THE LINE IS SHIFTED TOWARD THE VIOLET.

A and Xe have minimums while He and Ne do not, so that one would expect from the theory that the
shift direction would be red for the two former and violet for the two latter. This has been found to be
indeed the case.® 4 4¢

Hg has been experimentally determined as displaced to the red which to a cursory inspection might
indicate a minimum. If, however, the Polarization Effectf is large enough, the Potential Valley Effect of this
and the last section might not be large enough to overcome it so that even though the aggregate shift is
toward the red, the Valley shift might be toward the violet. This is Reinsberg’s assumption in this case
at any rate.

Reinsberg calculated the magnitudes of some shifts with quite good results. In doing so he took the
values of the phase shift from the work of Faxen and Holtsmark.

9.5. THE LIMITING BREADTHS OF THE HIGH SERIES LINES

As our last consideration of this specialized effect, we shall consider Reinsberg’s treatment!® of the
breadth of the spectral lines in the limiting case of very high principal quantum number. Let us first remark
the results of Fuchtbauer on the breadths of spectral lines as a function of principal quantum number.
Quite concisely, Fig. (9.3) gives the manner in which, as an example, the (1s — np) Na line broadened by 4
varies with principal quantum number, n. It is very apparent from this figure that, for sufficiently high n,
the line width approaches a limiting value. Itis this limiting line width which Reinsberg attempted toobtain.

In carrying through this calculation the general method will be an incorporation of the interaction
forces of Secs. 2 and 3 into the framework of the Lorentz collision theory through the medium of the collision
cross section.

To begin with then the level** width is given by:

= L o 2o 2k po 9.27)
T x * VmT

* References 142, 143, and 144.
t See supra, Sec. 9.2.
** Reinsberg simply used the Lorents result for the levels giving rise to a line rather than for the line itself.
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where now T and NN, are a temperature of 273.3°K and the number of atoms per unit of volume respectively.
o is the cross section through which the special effects of this chapter will enter.

Now we begin the problem by choosing as the absorber the hydrogen atom. Next the Bohr assumption
is utilized to the effect that we take as the radius of an orbit corresponding to principal quantum number n
the value ron®. As a consequence, when we suppose the electron to be a unit of charge uniformly smeared
out* through the sphere corresponding to this orbit, the constant electron density (or charge density) is:

3

4xre®nt

d= (9.28)

Now Eqs. (9.12) and (9.26) tell us that one noble gas atom in interaction with one electron has the
interaction energy:

p- b (9.29)
4ma*V2mE
so that this atom will now be affected by a potential:
Ed (9.30)

as given by Eqs. (9.28) and (9.29).

Eq. (9.30) gives the main contribution to the potential curve shown in Fig. (9.4) between the points
riand r;. For convenience one might consider it as the only contribution in this region to a fair approxima-
tion. Thus, the Potential Valley Effect builds the potential curve in this portion of space.

To build the remainder of the potential curve we utilize, as one might suspect, the Polarization Effect
so that the interior portion of the curve is given by the equation:

ael
S (9.31)

Broadeners of thermal E = 3/2kT are now to be considered, and one of two rather obvious situations
may arise, either E < Vyor E > V,. Although these “‘things” which the energy may do are rather ob-
vious, they lead to some rather important consequences.

First the case E < V. In this case the foreign gas atom cannot climb the wall at r, and, as a result,
all within a sphere of this radius is forbidden to it. This means that the collision cross section for such an
atom is:

wr? = wre*nt (9.32)

It also hardly needs remarking that this will form a lower limit on cross sections for atoms of higher
energies. We shall return to a consideration of the more complex problem of cross sections for these higher
energies after a few preliminary remarks.

Through Eq. (9.27) the level widths are directly proportional to the cross sections with which we have
been concerning ourselves. Now Reinsberg supposed that the width of the np level might simply be added
to thewidthof the ls (only transitions (1s — np) are being considered) level in order to obtain the width of
spectral line. Further the 1s level width is negligible compared to the width of the other combining levels
8o that the course of the level width with principal quantum number may be inferred directly from Fig. (9.5).
Another interesting point is illustrated by Fig. (9.5). This figure shows the displacement of the curve of the
level widths with temperature, This latter effect may be directly traced to the increase of the cross section

* This may beiter be considered as smeared out location probability and hence timewise charge smearing.
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(and consequently the level width) with a decrease in temperature (accompanied, of course, by a decrease
in energy) according to Eq. (9.32).

It now appears that the obtention of the cross section for E> ¥V, will mean that the problem as set up
has been solved. The solution is furnished us by the work of Massey and Mohr.!* These two authors!? 1%,
in quantizing the earlier work of Chapman'” '8 on free paths and various transport phenomena, obtained
the expression for the cross section which will prove applicable to the present situation.

We begin by defining the quantity I(8) sin 3d¢ as the probability that a particle will be scattered on
collision through an angle between & and ¢ + d¢. From this definition, it follows logically that we may find
the collision cross section — the total probability that the particle will be scattered in any direction what-
soever — as:

o = 2r [ I(9) sin ¢ d¢ (9.33)

Quite evidently then the determination of the collision cross section demands the prior determination
of I(#). This we proceed to do.

We initially assume that a solution of the equation

2
vy + g [E-V0ly =0 (9.34)
at some distance from the scattering atom, the absorber, is desired. It will be of the form:
1 % 2mE
= &7 f(9) where: k* =
. " f(3) where Y

where the first term represents the incident particle in the form of a plane wave and the second term repre-

e + (9.35)

sents the scattered particle. Since the solution P,(cos ¢#)f,(r) is a quite satisfactory one, the solution

% A, P, (cos ¥) f,.(r) (9.36)
is equally so. From this equation one may, by integration and requiring that the asymptotic form of f,(r) be:
fulr) ~ = sin (kr - "—1> 9.37)
kr 2
determine the A4, so that: .
e = 3 (2n + 1)i"P, (cos ¢) fu(r) (9.38)

We take the solution, Eq. (5.55), where, we may recall, the rL,(r) is the solution to Eq. (5.56a). Now
Eq. (9.38) is subtracted from Eq. (5.55) with the intentior of obtaining the expression for the scattered wave
in this fashion:
A, L) — @n + D fo(r) = Crie™ (9.39)
When the asymptotic expressions for the f,(r) from Eq. (9.37) and L,(r) from Eq. (5.59) are utilized,
there results:

kp ) ko .
;—kr[A,,e'T" ~ (2n + Di"] ~ ;Tkr [4ne™™ — (2n + 1)i"] where: ko = kr — '-‘21 (9.40)

It is apparent from Eq. (9.35) that, since this is to be the expression for the scattered wave, 4, must
be given by:
A, = (2n + 1)i"e™ (9.41)
Thus, the wave function representing the incident and the scattered wave is:

v= 3 @n + 1)i*'™ L.(r) P, (cos 9) (9.42)
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of asymptotic form:
rmeé* f (9)

s0 that: @) = 2% S @2n + 1) [#™ ~ 1] P (cos 8) 9.43)
14 n

This equation is precisely the one for which we have been looking since by quantum mechanical defini-
tion the absolute square of f(#) multiplied by the angular volume element gives us the probability that the
particle will be in the angular volume element. Thus, from Eq. (9.43):

Hw=4;zuh+nk“m-um@mmp (9.44)

The substitution of this expression into Eq. (9.33) leads to:
o= " 3 @n+ D, (9.45)
K n

Eq. (9.45) is the one which Massey and Mohr treated under the assumption of a potential of the form
Cr*, exactly the type with which we are concerned. Beginning with Jeffery’s form® for the phase shifts
in Eq. (9.45), these authors carried out an asymptotic solution for large n to obtain:

9. . " 2, 8~1 2,3-1
s 23 [(s__})-_- "] (C) (9.46)
s—2 Lis-2n 2 P
e — 1

4and C = 12 ae?, and, when werecall thate = —— = ¢
41FNO

5 3<92 >23 (6 - 1)2/3( 1 >1/s (m)1/3
= - - — — — 9.4
©T 2 T\ 4N/ \2mk) \T 0.47)

The limiting value for the line width may then be found by substituting Eq. (9.47) into Eq. (9.27):

5 To .Vf;W 13 (’l 23
600 = k)16 — 1)278 T8)—1/6 .
2 ¢ ( 2 ) <4h> (@rk)™" (¢ e mT? (-48)

To this width is added. for the line width, the width due to the Valley Effect. A comparison of the widths

Eq. (9.3)) tells us that s

[

|

calculated in this manner with those observed by Fuchtbauer and Schulz* is given in Table (9.1). Although
the agreement is not of the best, one should remember that the consideration has been a bit rough, and,
perhaps more important, only this particular type effect has been considered while the broadening of the
lower level has been neglected.

P T (e —1)10% b &y 814800 Sexp
Na/A 2.26 762.0 57.4 3.77 0.08 3.85 3.59
K/A 4.00 754.3 374 6.39 0.15 6.44 6.25
Na/He 8.30 805.8 6.85 4.07 9.53 4.64 5.44
Na/Ne 8.06 743.5 13.30 5.44 0.31 5.75 4.18
Cs/Kr 1.1t 567.0 83.17 2.45 0.04 2.49 3.73
Cs/Xe 1.97 568.3 136.00 5.81 0.06 5.87 8.30
Na/H; 1.48 792.6 26.10 2.16 0.12 2.18 3.24
Na/H, 1.48 755.8 54.70 2.58 0.06 2.64 3.27

Table 9.1, (After Reinsberg.!®)

2~
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APPENDIX 1
THE FOURIER ANALYSIS

There often arises the necessity for utilizing a mathematical tool which we see applied by various
investigators as the panacea for the line broadening. We refer, of course, to the Fourier analysis. Let us
then develop the concept behind the equations which we use, not in a manner to provide rigorous mathe-
matical justification for the result we obtain, — for this we may refer to an almost unlimited number of
sources — but after a fashion which will provide us with a physical basis for its use.

Let us begin with the familiar function a, sin 27t + b; cos 2xvit where »; is some frequency or other.
We may plot the value of this function against time, thus:

t—
Next the function a; sin 27vet -+ by cos 2wt may be added to this, graphically if you wish, to obtain this

t—
perhaps, depending on the values we choose for the constants », v, a,, etc.
This latter curve indicates the possibility of obtaining, at least approximately, almost any curve by
proper choice of the v, a,, b If we properly choose, say, ten of the functions, we may obtain:

A t —» B

It would appear intuitively apparent that the extension of the number of cosine and sine functions to
infinity results in:

A t,—» B

0 o0
of equation: f©) = Z a; sin wit + = b; cos wt Ly
=1 i=0

where: w; = %—\—m

i
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We have thus written an equation (Eq. (I.1)) for a wave beginning at time A4 and terminating at time B.
Now the fact that the sin w,t and the cos w;t are orthogonal allows us to write:

a; = const [ f(t) sin wi dt b; = const [ f(t) cos w,t dt (L.2)

The presence of both sine «nd cosine functions indicates the possibility of transforming to an exponential.
This leads to:

+o0
f = Z Jw)e* J(w) = const [ f(t)e™""ds (1.3)
1= ~00 .
We simply accept the statement that if [ | f(¢) | dt exists, Eq. (I.3) may be rewritten as:
+o -
f® = f Jwedo (14a)
1+ ,
Jw) =~ S fH)e ™ d&t (1.4b)
T —w

Eqs. (I.4) are the equations for Fig. (I.1) as given by the Fourier transform.

The point which we have attempted to bring out is the manner in which the cut-off wave train of
Fig. (I.1) may be built up from an infinite number of infinitely long wave trains of various specific frequencies.
Eqs. (1.4) demonstrate the manner in which the various amplitudes weight the various frequencies.

Ag a final consequence then, in considering the effect of interrupting collisions one might say that their
result is for the observer 1o obtain frequency measurements which indicate to him that an infinite number of
wave trains of different frequency and varying strength have replaced the single wave train. This is also
the same as saying that an infinite number of state growth coefficients, which give varying probabilities for
the various frequencies of photons present in the field after radiation, exist. These state growth coefficients
are discussed first in Sec. (4.19). The absolute squares of the coefficients in question yield the probability
for the presence of the photons corresponding to the coefficients, and we might consider these individual
coefficients as corresponding to individual Fourier components,



APPENDIX II
A GROUP THEORY APPLICATION

We propose to discuss here the manner in which group theory may be used to break the vibrational
secular determinant into steps. In order to accomplish this let us carry through the procedure for the
pyramidal XY; molecular model of which ammonia is an example. It seems that this should serve as an
illustration of the general procedure.

Z

$ y

4 3
p Pt
/ 15\ //J |
h / h‘\ e
o / ‘ \\ » X l@_\_ao_4 | »X
/ h \ N
/ i \ ~ :

T
~
! .1 D2 AN
b2
We begin by recalling that our Langrangian may be written as:

L=T-V=04l0THNdl-TqllVilql

where || ¢ || and || ¢ |! are column vectors, and || T {| and || } || are the matrices of the kinetic and potential
energy respectively. Now let us note that, since there are four particles present, twelve Cartesian coordinates
will describe the behavior of this assemblage. Let us turn our attention to Fig. (1I.1) and determine what
covering operations may be performed on the molecules of this figure.

Now a covering operation is defined as an operation (such as a rotation about the z-axis of Fig. (1L.1))
which, when performed on a molecule, leaves the molecule essentially unchanged. We might consider the
proper (boreal) rotation of the XY; molecule through an angle of 120 degrees about the z-axis as an example
of a covering operation. After this rotation has been carried out, particle 1 is occupying the position previ-
ously occupied by particle 2 and so on, Y atoms remain at the corners of the base, and the configuration is
considered as indistinguishable from the original one.

A study of Fig. (IL.1) tells us that there are six covering operations which may be performed on the
molecule in question. These operations are: (1) the identity operation in which all particles are left where
they are, (2) a rotation of 120 degrees about the symmetry axis, (3) a rotation of 240 degrees about the
symmetry axis, (4) a reflection of all particles through the plane which is perpendicular to the Y-plane and
which contains particles 1 and 4, (5) reflection through a vertical plane containing 2 and 4, and (6) reflection

'
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through a vertical plane containing 3 and 4. Each of these covering operations results in a transformation
which may be represented by the matrix equation:

X =lall il X

where || X’ || is a column vector representing the coordinates of a particle prior to one of the covering opera-
tions; || X {| is a column vector representing the coordinates of the particle subsequent to the transforma.
tion, and, finally || @ || is the so-called matrix of the transformation. || a || is obviously a mathematical
representation of the operation.

The transformation matrices for the six covering operations which we have enumerated may be written
out as follows:

1 V3
1 00 -5 5 0
E=|E|=1]010 4 = || €(120) || = Vi1 .
\ 0 01 T2 2
0 0 1
_L ¥,
2 2 1 0 0
B=jiceii=| ¥ _1 | c=llaaal=|0 -10
2 2 0 0 1
o o 1)
1 —-:/é_ 0\ 1 _1@ 0\
2 2 2 2
D=lla@oll=| ¥ _1 (| F=lla@ai=| ¥ _1 ,
2 2 2 2
0o 0 1) 0 0 1

In the above matrices, (() represents a rotation through an angle 9, and 0,(i,j) represents a reflection
through a vertical plane containing particles i and j.

Let us suppose that we perform the A operation on the molecule and subsequently perform the B
operation, and let us represent the performance of these two successive operations as BA. When we rotate
the molecule through 120 degrees (4) and subsequently through 240 degrees (B), we arrive at the same final
result as if we had left everything where it was (E). We then agree that we may write B4 = E. Let us
then form a table as follows: In a top, index row we shall write the right member of a product, in our example
A. On the left, index column we write the left hand member of the same product, for example, B. In the
table proper we write the results of these various multiplications, again in our example, E. For our six
transformation matrices we obtain:
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E A4 B Cc D F
E E A B c D F
A4 A B E F c D
B B E A D F Cc
Cc c F D E 4 B
D D c F 4 E B
F F D c B A E

Table II.1

as the multiplication table.

Several things may be noted from the multiplication table for our array of transformation matrices.
(1) The array contains the so-called identity element, E. (2) The result of every possible multiplication of
various members of the array appears in the table and is consequently in the array. (3) From the table we
see that every member of the array possesses an inverse and that this inverse is in the array. For example:
AA™ = E = ABso that A~ = B. (4) Multiplication of two operators (as we have defined multiplication)
is associative, thatis tosay: (AB)C = A(BC). As we are, of course, aware, these four attributes of tho array
mean that, by definition, the array of matrices constitutes a group. This particular group has been gener-
ally designated as the symmetry point group Gy, The fact that this is a group means that, in addition to a
certain aesthetic value which quite impresses the mathematician, it possesses attributes which will be useful
to us. In considering these, let us first remark that the element X is the transform of the element Q by the
element P if:

X=PQP

Further, two elements, one of which is the transform of the other, are said to be conjugate to each other.
Finally, all elements conjugate to each other belong to the same class of the group. As a result of all this,
the elements of the C,, group are subdivided into three classes; specifically, E is in a class by itself, the rota-
tions 4 and B are in the second class, species A, the reflections C, D,and F fall into a third class, species A,.

Let us approach our next consideration by writing, for example, the element D as:

1_%
2 2 IR o0
I'(R) =D = Y =
- 12/3 - —;- 0 0 TW(R) (ILY)
0o 0 1

Now we could suppose that here we have performed a similarity transformation where the unit matrix was
our transformation matrix and have reduced the “reducible representation” I'(R) to the two irreducible
representations I'(R) and I'®(R), these latter now appearing as square, step matrices in I'(R). It o
happens that a group will have as many irreducible representations as there are different classes within the
group. We thus are in need of one more, namely, I'®(R) and the determination of it will furnish a convenient
method for the introduction of several rather important facets of group theory.

We let the number of elements in the group be g and the dimension of the matrices in the i-th irre-

e
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ducible representation be d;. Now the easily verifiable orthogonality of the various irreducible representa-

tions leads to:

2 TR TR = o dubucha (I12)
Further, if there are n classes in the group:

é d? =g

i1
or, for the specific case of the G, group:

d* + & + di* =
and, since d; = 1 and d; = 2:
=1

and T'®@(R) will consist of 1 X 1 matrices. One may try the I'® in Table I1.2 in Table 11.1 in order to verify
the fact that this representation meets the necessary requirements for an irreducible representation.

E 4 B c D F
1 (L ) @ a) (¢} rw
¢y ® (¢)] (-1 (D (-1 re
{1 o _1 M\ (_ 1 _ s 1 o MY/ L _¥3\(1 3
2 2 2 2 FE 2 2
_ - - . @)
o 1 IZ I U R ETNE T RN (U CION B § N ER S ‘
2 2 2 2 2 2 2 2
Table I1.2

Now let us define the characters x as the sums of the diagonal elements of the various matrices. A check
of the characters of, say, 4 and B in the various representations shows these two elements of the same class
to bave the same character for a given irreducible representation. Identical characters for members of the
same class proves to be a general situation, and one may construct a character table as follows:

Species 1+ CG(E) 2. G(GY 3+ Ci(ow)
A4, 1 1 1 re
Ay 1 1 -1 ra
E 2 -1 0 re

Table I1.3
Next we consider an arbitrary, reducible representative of the Cy, group of character 5. Then this X
may be expressed as the sum of the characters of the three irreducible representation as:
E = ax® + anx® + ax®
A consideration of Eq. (IL1) suffices to tell us that, for example:
Ep=1.x040.x® 4 1.x®
but we need a slightly more general expression for the expansion coefficients, a;, than this.

(1L.3)



307

Writing Eq. (I1.3) as:
B = Za x@

one may multiply through on the left by 3 r, and on the right by x»” and apply

ma=}
El Fm Xm Xm(J) = g”ij (11'3)
ma=
with the result:
10—
a; = — T Iy Ep xm® (11.4)
g m=1

where g is the number of elements in the group; r,, is the number of elements in the m-th class; = is the
character of our reducible representation in the m-th class, and, finally x,,"” is the character of the J-th irre-
ducible representation in the m-th class. We have obtained essentially all the group characteristics for which
we shall have use, and we now apply these characteristics to our vibrational problem.

To begin with, let us suppose that we have found the normal coordinates of the vibrational problem, and
further let us imagine there to be two non-degenerate and two twofold degenerate vibrations. Then:

2 4

T=20+2 @ + 0 (IL5a)
2 4

V= El kQ: +‘§3 ki(Qia? + Qa?) (IL5b)

It is certainly apparent that a covering operation, such as we have detailed, will not affect the kinetic
or potential energy. In order that this operation not affect the mathematical expressions for these entities,
certain restrictions must be complied with. First, as concerns the non-degenerate coordinates. If Qg is
to go into itself as a result of a covering operation then:

RO, = £ @

In other words, only the 'V or I'® matrices of Table I1.2 may operate on a non-degenerate coordinate
such as Q1. The value of this observation is more easily perceived by backing up slightly.

Let us suppose that Lagrange’s secular determinant is set up in Cartesian coordinates so that, for the
XY; model, the determinant is 12 x 12 and rotational, vibrational, and translational motions have not
been separated. A la mode, we would next use the Eckart conditions for this separation, byt it is bere that
group theory may be used to simplify the succeeding vibrational problem. Instead of simply selecting
coordinates free of translational and rotational associations, we choose coordinates which react to the cover-
ing operations as we know our normal coordinates must. These are, of course, the so-called intermediate
symmetry coordinates. For example, we know, after a fashion which we shall detail somewhat later, that
two of the XY vibrational coordinates must belong to Species 4, that is, they go into themselves under all
covering operations. Further, the potential function is not yet diagonalized, so that interactions between
certain of the vibrational coordinates are allowed. The potential function must still be invariant with respect
to the covering operations so that interactions are only allowed between intermediate symmetry coordinates
of the same species. We then see that choosing intermediate symmetry coordinates has the effect of breaking
the secular determinant into blocks of easier solution.

Let us conclude with a consideration of how one determines the number of vibrational coordinates
belonging to each symmetry species.

-
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Purely for reasons of simplified consideration let us consider a bent X Y; model as illustrated in Fig. (11.2).

4
Yo1

> Y
Yo2 Yo3

X

In this model a proper (boreal) rotation through an angle of 180° obviously comprises a covering opera-
tion. Now if 2,7,z are the coordinates of the i-th particle before a proper rotation and x,’y;'z, those of the
same particle after such a rotation, a study of Fig. (I1.2) tells us that:

[ 2 [ cosp sme 0 : \ [ % )
' ~sinp cosp 0| 0 »
z’ 001 } ________________ z
x2' ‘ ] 0 0 —1 00 e IL6
¥/ o 00 0 -10 » (IL6)
' 0 ll 0 00 o0 01 P
x;’ [ -1 00 0 00 Xy
¥/ b o-10 0 00 || 5|
\ z / \ I 0 01 o 00/ \ )/
In Eq. (IL.6) we note that the character of the matrix of this proper rotation — a group element — is
given by: x(C) =1+ 2cos ¢
= u,(l + 2 cos ¢) (IL7)

where u, = 1 is the number of atoms unaffected by the proper rotation, in this case the X-atom. Eq. (I1.7)
then gives the total character -— translational + rotational + vibrational — for the proper rotation through
an angle ¢.

Next we note that an improper rotation — that is, a proper rotation followed by a reflection through a
plane perpendicular to the axis of rotation — may be made to correspond to the reflection C, D, and F of
Table (I1.1). For the obtention of the total character under such a perfoPmance we may follow a procedure
precisely similar to that utilized in obtaining Eq. (IL.7) to obtain:

x(S) = u,(—1 + 2 cos ¢) (IL8)
where now u, is the number of atoms which are unchanged by *he improper rotation.

The unit matrix will replace the matrix of Eq. (IL.6) for the identity operation. As a consequence:

x(E) = 3N (IL9)

We thus have the total character under the various covering operations. Let us again consider Eq. (11.6).
When we transform from the coordinates of this equation to coordinates three of which describe translational
motion, three of which describe rotation, and three of which describe internal vibrational motion, this total
character should not change. That is to say, the character should be invariant to this coordinate transforma-
tion. If we let XYZ be the translational coordinates, ¢, ¢, ¢ the rotational coordinates and qiqq; the
vibrational, the transformation inferred by a covering operation will be:
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(x\ ! WES
Y’ Translational | 0 Y
z S SO z
8 ! ; )
_ | ,
¢: = l Rotational l, @ (11.10)
v 0 . R v
2! | 9
P } Vibrational G
\ ¢ | ) \a/

If we call x,oea; the total character. the invariance of x4 means that the matrix of the covering operation
in Eq. (I1.10) will have the same churacter as the matrix of Eq. (11.6). Let us now designate the transla-
tional character, the rotational character, and the vibrational character as Xiranss Xrots and Zy, respectively.
Then a consideration of Eq. (11.10) teils us that:

Zuib ** Xiotal — Xtrans — Xrot (II.].I)

If we are desirous of obtaining Z,;. the next step would appear to be the determination of Xyraps and xyo;.

A consideration of Eq. (11.10) is sufficient to tell us that the translational coordinates simply transform
as a vector of components X, Y, and Z-—in a given frame. Thus, our remarks leading to Eqs. (11.7),
(I1.8), and (11.9) should be equaily applicable here. One thus obtains:

Xiraas(C€) = 1+ 2 co8 (IL12)
Xirano(S) = —1 + 2 cos (IL.13)

Finally then, we must needs find x;r. To do this let us first determine the manner in which the angular
coordinates ¢, ¢, and ¥ transform.

Let us first recall that the component of the angular momentum L are functions of§, &, and ¥, and, we
might note, transform as do &, o, and . Thus, one may express L in Cartesian coordinates and deter-
mine the manner in which it transforme from one Cartesian form to another. Now:

L=mZe Xy = m,-Zr,-Xé—?-
3 H

or: oL = m Zr Xir,

so that: st L, = m,|ybz — zéy] (11.14a)
st L, = my[zx — xbz} (I1.14b)
8t L, = m, [xdy — ybx] (I1.14¢)

The expression for the transformation of a position vector under a proper rotation may be utilized in
Eqgs. (11.14) to determine the manner in which the components of L transform. One finds:

( LS\ cose sin g 0 L,
L/ ] =] -—sing cosp 0 L, (IL.15)
\ L, \ 0 0 1 L,
Under an improper rotation the manaer of transformation is given by:
(L, ( o e —sing 0 L,
L/ | = sing —cosp 0 L, | (11.16)
\L.) \ 0 o 1 L,
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Since ¢, ¢, and y will transform in the same fashion:
Xrot(S) = 1+ 2 cos ¢ (L17)
Xrot(S) = 1 — 2 cos ¢ (11.18)
We may now substitute Eqs. (I1.7), I1.12), and (IL.17) into Eq. (II.11) in order to find the character
of the vibrational coordinates under a proper rotation:
Euip = u(l 4+ 2cos ¢) — (1 + 2cos ¢) — (1 + 2 cos ¢)
= (e = 2)(1 + 2 cos ¢) (IL19)
The character of the vibrational coordinates under an improper rotation may be found by substituting
Egs. (IL8), (IL.13), and (II.18) into Eq. (IL.11):
B (S) = uy(-1+ 2cos ¢) — (=1 4+ 2cos ¢} — (1 — 2 cos o)
= u,(—1+ 2 cos ¢) (IL.20)
Finally:
Ea (E) =3N -6 (I1.21)
Let us now apply our general Eqs. (IL.19)~(I1.21) to the pyramidal XY; of Fig. (IL.1) to obtain:

Evib(E) Evib(C) Evib(c)
Tvib 6 0 2
Table I1.4

Thus, the transformation matrices, which transform the vibrational coordinates according to the cover-
ing operations of the C;, group, are possessed of characters which give a group representation as indicated in
Table (I1.4). Now let us compare this to Table (I1.3), the table of the irreducible representations.

We know that the reducible representation of Table I1.4 is expressible as a linear combination of the
irreducible representations of Table I1.3 with the coefficients of this expansion given by Eq. (I1.4). If we
apply Eq. (II.4) to Tables (11.3) and (II.4) we find:

Fyp=2-TO 4+ 0.7® 4 2.T® (IL.22)

Next, let us consider rather carefully what we have determined.

We consider only the behavior of the vibrational coordinates under a proper rotation. Eq. (I1.22) tells
us that there will be two of the I'"? representations and two of the I'® which means, according to Table 11.2,

that:

( ¢ \ f_l—}—(_)__ 0o 0 0 0\ ( ¢ \

@ ol ;0 0o o o0 P

o |=] 0 0=} alo 0| g

qx’ 0 0 —a -4 ] 0 0 qs (11.23)
qlal 0 0 _6__6_“]:{-:;— Qia

Ve / VLo 0 0 ola -3/ \ gl

+V3

where the ¢; are the normal coordinates. We note that a = ~ depending on the amount of rotation.
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Our conclusions in connection with Eqs. (I1.5) now tell us the type of normal coordinates which are
to be expected. From Egq. (11.23), two non.degenerate coordinates, q: and ¢, are to be expected. We
emphasize the fact that this is the same number as the number of non-degenerate representations I'.
Further, two twofold degenerate coordinates, the same number as the number of twofold degenerate repre-
sentations I'®, are to be anticipated.

Thus, by determining the number of non-degenerate representations in the expansion Eq. (I1.22), one
finds the number of non-degenerate vibrational modes of which the molecule is possessed and so on for two-
fold and threefold degenerate vibrations.




APPENDIX ITI
THE MOLECULAR HAMILTONIAN

In obtaining Eq. (2.22), which is what we propose to do, let us begin by writing down Eq. (2.6):
2T = M@+ Zmye}r + Z‘Z.B apwawg + 2+ Tmyr, X v, (2.6)

‘We have observed in Sec. (2.2) — albeit, after a rather cavalier fashion -— the manner in which the
obtention of normal vibrational coordinates results in the normalization and diagonalization of the vibra-
tional kinetic energy function, namely:

Zm,vﬁ =Z ékz‘
k

Now let us recall that r; may be expressed as the sum of a vibrational equilibrium component r,* and
a vibration induced component r/. Ergo:
rp=r"+r/
In Sec. (2.2) the Eckart conditions — Eqs. (2.16) — were utilized for the purpose of restricting the
problem to an internal vibrational one. Here, let us use a modified form of Eq. (2.16a), to wit,
Zmpr®X v; =0

so that Eq. (2.6) becomes:
2T = Zg[aa wawg + Zmapd 4+ 20 - Zmr/ X v, (IIL.1)

in which the translational kinetic energy has been neglected.
We will surely agree that Zm,r;/ Xv; is — when expanded — an expression in terms of the particle

coordinates and time derivatives thereof, and, further, that the ¢, are also funetions of these coordinates.

It then follows that dogged and reasonably intelligent application will yield a transformation like this:

Zm(r/X v}, = ‘E\qu (I11L.2a)
Im(r/Xv,), = E)’m (111.2b)
Zm(r/Xv,), = ka(ik (111.2¢)

where the X, Y,, Z, may be expressed as functions of the ¢, and certain constant coeflicients.
Eq. (IIL1) then becomes:
2T = ZZ:BIagwawg + 20,2X0qs + 20, Vi + 20,32 g + 2 qi (11.3)
a k k k k

Now in order to obtain a Hamiltonian from this equation it will first be necessary to re-express it in
terms of momentum since it may be recalled that Hamilton's function must needs be expressed in terms
of conjugate momenta and coordinates.

There would appear to be no question but that the angular momentum of our »ystem is:

P =Zmr; Xt = Zmr, X (@ X 1)+ Empry Xv, (111.4)
1 1

since, in a moving frame:
F=v+ooXr
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In any case
p=T
“ Owa
which may be applied to Eq. (II1.3) with the result:
aT
Pz = 5“;2 = dgaly — Izu“’y - [z:‘l’: +.2Xbéh
aT
Py = E‘; = — Ly, + Ly — yg@,‘}'?ybq.j
aT
P, = 5:,'; = T dag — Iy n“’:'*'fquk
oT .
P, = 5& =@ + Xz + Yiwy + Zpo,

Eqgs. (I11.5a)-(I11.5c) may first be employed in writing Eq. (IIL3) as:
2T = P, + Py‘t’y+ P, + Epyh
in which we may suhstitute for g; from Eq. (II1.5d) to obtain:

2T = (P; - Pz)"’z -+ (Pv - Pv)“’y + (P: - Pl)wl + EZP"

wherein Pz = ZX;p;, ete,

Again let us substitute for ¢; from Eq. (IIL.5d), this time into Eqs. (IIL5a)-(IIL.5¢):

P, - p. = Aw, — Dw, — Fu,
P, - p, = — Dw, + Bw, — Ew,
P, ~ p, = — Fu, — Ev, + Cu,

or: |Pa = pall = llA]] [lwgll
where:
4 -D -F
l4i= | =D B —E
~F —-E C

The wg coefficients are:

4= I:z — EX,;" M B = Illll e EYkz M C = Iu fand ZZ,,’
D = Izv + EXIcYIc ;i E= Iﬂz +2YZ,; F= I, + EXbZk

We multiply Eq. (I111.6d) through on the left by ||4||~** with the results:
llogli = U417 |[Pa = pall = |x]| [IPa ~ pall
and we may substitute into Eq. (II1.6b) from Eq. (IIL.7):

2T = xz2(Ps — p2)* + x0(Py = p)* + xa(P: — p2)* + 2x2(Pz — p)(Py — py)

+ 2x3.(Py = po)(Ps = ps) + 2Xe2(Pe — po) (P — p2) + Zpg?
We have already noted that:
P:=2X,ps s py =ZYipi; pi=ZZip;
Ajs

*We recall that a,.”! = ——
5 lal

(II1.5a)

(II1.5b)

(I1L5¢)

(I11.5d)

(111.6a)

(I1L6b)

(IIL6¢)

(I1L6d)

(111.6e)

(11L.6f)

(111.7)

(I11.8a)

(I11.8b)
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and a consideration of these relations is sufficient to show that the p, are the components of the angular
momentum which arises from the internal vibration of the molecule. It now remains to transform Eq.
(I11.8a) to a quantum form.
We agree that the quantum mechanical Hamiltonian operator for a system of i particles is:
H=8ZV24+YV (I111.9)

This expression holds in any coordinate system so long as we recall from tensor theory that

12 0 i oy O
T2 g2 9 itz 9 1IL.10
g aq; an ( a)
where: VoAl
ox" Ox
=3 B I11.10b
8is 1 ¢ o ( )

and some further definitions remain to be accomplished.

In the first place x' refers to one of the three Cartesian coordinates while ¢ and ¢’ may refer to one of
the coordinates in whatever type of frame we transform to. We insist that the transformation is from a
Cartesian frame, however, and the reason for this is of some importance, if obvious.

Schrodinger originally established that cne replaced p, by — t}l — ,py by - z/ — , etc. so that the
ox

Cartesian p* is replaced by the Cartesian — }{ V2  Actually — A*V? replaces p’ in any coordinate system,
i Vtis as given by Eq. (I11.102) but the partial derivative does not replace the squared momentum
component.
As an example of the g;;:
1 0 o0 \
llgl =] 0~ 0
0 0 rfsin?s /

tor the transformation from Cartesian to spherical polar coordinates.

Finally, g is normally defined as:

g=det [lg,jl|
fp = —/ égiwh‘ere the p; and ¢, are arbitrary and conjugate, then Eq. (II1.9) may thus be
rewritten as: l
H = %g-l’??’p,g‘ig”"’p, +V (I1I.11a)
where lg”ll = ligall ™

In order to conform with the Wilson and Howard notation we redefine g as:

g = det ||g"]|
vo that Eq. (111.11a) becomes:
H= %g"sz;g'fg“*p,- + ¥ (I1L.11b)
which reduces to: |
H= 1zg%pp,+V (I1L.12)

tor the classical case in which the various factors commute.
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Now ket us- introduee g new <t of momenta. P, such that

pr - % s P (IL13)

1
whess shu £7 are not canjugate to any set of coordinates yet established.
Wooaoy athue b (0120 10 obtain an expression for the kinetic energy of our system in terms

of the new <1 of momenta:

2T - 3 6™ P, P, (111.14a)
where
G2 X s 85 (I11.14b)
g

et e rent wuppose that the Hamiltonian may be expressed as:

H ety P P+ b (111.15)
which we <hall cee will require that certain condinons be fulfiled (ligs. (11L3), (111.14b)), and the fact
that €, et 670 ve may be used o K. (1EL5) with the result:

i Tt 3 ™ ops, s gk’g*’pl + ¥V (I11.16)

Trvouhld Appear re~onable to redquire thi~ cqudalion te reduce to qu (“Illd), but this reduction means
that:
< mi 1
:' 3 ) Py Sem = 2]’1:5 (III.17)

Fhe poomas aos b tabencas poopoopand pythat s the momenta conjugate to the three Eulerian
il o e the nornab coordisates. The 22 ot by, (T are, of course, the P, of Eq. (111.8a).
Ao anpde,
o Y AT Y . al o d{l J;»
r o T : po b Pet 7 pg

. RN arode, A A, dw, dw, dw,

and the vedlations aawne the Caderan augles may be wsed 1o evaluate the parliul derivatives.

Pl

i, n"p, (111.18a)
wlhove:
Cosy esC oy omn g cos {rvot o O P
wp an fese e comi st fent e O P
0 N T (111181
\ 1] [ {) 1 Pk
The tran~tormatien:
P, p, TR A
vhere
| U 0 - X,
o 9 | 0 - EY,
0 ] 1 7
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is next carried out so that, in toto

1Pa = pall = W™ 110" = llpdl = lisamll= lpidl = lls™}| |lpd] (ITL.19)
and, it is apparent that the s™ satisfy the conditions of Eq. (IIL.17). This means that we may obtain a
Hamiltonian from Eq. (111.8a).
A comparison of Eq. (I1L.12) with Eq. (II1.8a) is sufficient to show that the g" of the former equation
correspond to the x,s of the latter. As a consequence, then, we may write, in analogy with Eq. (I{1.11b),
the Hamiltonian corresponding to Eq. (111.8a):

H=14x z (P~ P)xapx "} (Ps — pp) + %x’fpk X+ V (I11.20)

In order to obtain Eq. (2.22) we must expand this expression remembering that P, and p, commute
— the rotational and vibrational motions are independent — and, in addition, the P, and x,; commute
since the latter are functions only of the normal vibrational coordinates. The expansion is then quite straight-
forward and we obtain:

H = % EBXaﬂPaPﬂ - 2 TaPn + % EBX* PaXaﬂX_} PB + % E Xi Pz'X—* Pi + V(q;) (2.22)
where:
T = % {2xaPs + (Poxes) + Xasx® (pax™*)} (2.23)

In Eq. (2.23) the pg appearing in the parentheses operate only on those terms appearing within the
parentheses .




APPENDIX 1V

THE EULERIAN ANGLES

In considering these rotational coordinates we first turn our attention to the figure:

Now let us begin by remarking the following transformation:

'

x//l xll x
=@ |y | e |y | = @
zNI zll‘ zl
where, from the figure, we may quite readily find:
cosy siny 0 cosf 0 —sinp 14 cos a
(@’)@a)(a) = ~sginy cosy O 0 1 0 — sin a
0 0 1 sinf8 0 cos 8 0
cos @ cos § co8 v — sin « 8in vy 8in a cos B cos v + cos a sin ¥
= —~ cosacos Bsiny — sinacosy — sina cos §8siny + cos a cos ¥y
— cos a 8in sin « sin 8

x
Y
z
sina 0
cosa 0
0 1 )
— sin B cos v \
sin 8 sin ¥
cos g )

(Iv.1)

(Iv.2)

The angular velocities &, 3, and 7 will be measured along z, the so-called “line of nodes” y’, and 2z’
respectively. In the not unusual circumstance that we are desirous of expressing the angular velocity
components in terms of the time derivatives of the Eulerian angles, we could proceed as follows:
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Let us determine w,~. Firstly & is directed along the z-axis. Thus from Eq. (IV.2) it has a component
— sin 8 cos v along the x'"-axis. Next g is directetl along the y’-axis so that we may see from Figure (IV.1)
that it has a component sin v along the x'"-axis. Finally ¥ is directed along the z"’-axis and, since this axis
is perpendicular to the x'"-axis, will have no component along this x'*'-axis. Thus:

wgn = — gin 8 cos v& + sin 78
In like manner are wy~ and w,~ obtained:

Wy —sinfcosy siny O a
wyn | = sinf8siny cosy O 8
W cos 3 o 1 ¥
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APPENDIX V
SOME POLYNOMIALS AND THEIR EQUATIONS

Gauss’ Hypergeometric Equation may be written as:
@ -y + [L+at+Bx—aly +aty=0 (V.1a)
where o, 8, and v are constants. The Hypergeometric Series (Function),

af  ola+1BE+Y)
1y 2lyr + 1)

y = Flabini) = + #4... (V.1b)

furnishes one solution to this equation.
If, in Eq. (V.1a), x is replaced by 3(1 —~ x), and a; § and v are replaced by I -+ 1, — I, and 1 respec-
tively, there results Legendre’s Equation:
Q—=2)y” = 2% + U1+ 1y=0 (V.2a)
one solution of which is the Legendre Polynomial:

‘ 1-3~5...(2l—1){ p =1 4 W-DHI-2)T-3) ;- }
=P = —_————— #‘Ouo = Uy see
¥ = Pi=) I Fr-n T T ra@-nae-3 I=012
(V.2b)
A slight modification of Eq. (V.2a) results in:
2

(1 =)y — 22y’ + [l(l +1) ~ I—f—x-,] y=0 (V.31)

whose solution is provided by the Associated Legendre Function:
d" 1=012...
= (1 — 2"‘/2——‘P yLosy
y=({1-32) o 1(x) m =012 ... (V.3b)

The oft-encountered Laguerre Equation may be written as:
xy' + (1 —x)y +ay=0 (V.4a)

a solution of which is the Laguerre Polynomial:

n n 2 _ 2 _12
y =L = (- (5 - Mg B U,

Further, the Associated Laguerre Polynomial,

2y (= 1)"n.’) i n=01... (V.4b)

d* k=012
= — Ln = L”k 2 LN
Y=o (=) (%) n=012 ... (V.5a)
arises from the equation:
' —k+l=2y +(@—ky=0 (V.5b)
and the Associated Laguerre Function,
y = e H/2 ZR-DA L k() k=012... (V.63)

n=012...
is one solution to:

k-1 x k-1
7 2I+[—.________ ] =0
2"+ 2y n ) r y (V.6b)
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Hermite’s Equation,
Yy — 2% 4+ 2ay =0
yields the Hermite Polynomial:

y=Hux) = @) _ n(n-1) 2x)™ % + a(n — D(n — 2)(n

0/ 1Y 2

Finally, Bessel’s equation:
2y +xy + (a2~ nt)y =0
has solutions of many forms, but we note only the Bessel function of order n

- - © (_ l)t _f_ nt2¢
y=dla) = T+ A D) (2)

as an example of one of these.

-3 @)™t n=012,...

(V.7a)

(V.7b)

(V.8a)

(V.8b)




APPENDIX VI
THE WKB APPROXIMATION

It would appear reasonable to suppose that we may write the Schrodinger equation for any one dimen-
sional situation as:

Yy

N ikEN=0 k>0 (VL1a)
where:
k() = j— VG E = V@) (VL1b)
or:
P _hray =0 k>0 (VL.2a)
dx2
where:
kx) = }, V@ = B (VL2b)

The real basis for the W KB approximation is quite simple in that it amounts to an assumed ecigen-
function of the form:

V) = 47 (VL3a)
where u(x) is presumed expanded in powers of }f as follows:
u= o+ Mo+ Mo + ... (VL3b)
Let us, as an example, substitute Eq. (VI.3a) into Eq. (VI.1a) with the result:
i — ut + jh? =0 (VL.4a)

This substitution is followed by yet another; specifically, we substitute Eq. (VI.3b) into Eq. (VI.4a)
and separate the result of this operation into a series of equations each of which contains the coefficient of the
same order of 4

—u +2(E~-V)=0 (VL4b)

i’ — 2w’y =0 (Vi4e)

The differential equations of Eqgs. (V1.4b) and (VI.4c) may be handled by quite ordinary methods in
which case they yield solutions:

uo(x) = = Bk [ ki(x)dx ; wi(x) = }iBidnki(x) (VL5a)

In most cases it has been supposed that this first order of approximation is sufficient, and when, under

this assumption, we substitute Eq. (VL.5a) into Eq. (VL3b) and then substitute this latter equation into
Eq. (VL.3a), we find:

v(x) = Ak texp (2i [ kdx) for V<E (VL5b)
In like manner it may be shown that:

¥(x) = Ak Vexp (= [ hdx) for V> E (VL5¢)
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The solutions Eq. (V1.5¢) are admittedly an approximation, and it seems straightforward to ask under
what conditions this approximation may be expected to be valid. In order to determine this let us first
look to Eq. (VI.3b), since this series must surely be convergent for the approximation to be a valid one.
We ask under what conditions will succeeding terms in this latter equation decrease with reasonable rapidity,

that is, under what conditions will / -1 be small since we are not carrying the approximations any further
Uo

than to include these terms.
Now uy increases monotonically so long as ki(x) is positive since it is simply a measure of the area
under the ki(x) curve. Thus, the rate of change of this function may be expected to be positive and greater

’ ’
. uy . . . u,; .,
than one when our ratio /{ -— issmall. As a consequence the ratio }{ — will be small when «L, is small.
Uo Uy Uo

From this we may obtain a more meaningful validity equation. Eq. (VI.5a) yields:
pe| o |
uo' 2k12
We may recall that the Broglie matter wavelength is 2z /k, in the %, region in our present considera-
tions. This means that Eq. (VI.6) may be expressed as:

A | i

K1 (VI.6a)

4

From this expression it becomes apparent that our validity condition — Eq. (VI.6a) — implies that

Lk (VI.6b)

the momentum (obtainable from k) is essentially constant over several de Broglie wavelengths. This
condition is clearly violated at the so-called turning points of the classical motion which we now discuss.

V,(x)

REGION 2 REGION 2

REGION 1

|

|
| |
| |
| |
| 1
xl xz

Let us consider Fig. (VI.1). In this figure an arbitrary potential }'(x) and a total energy of a system
of mass u and momentum k1V are represented. A classical turning point is, of course, located at x,, since,
from a classical point of view, the system, when procceding from right to left, would be halted at point x,
by equalization of potential and total energy and would be forced to reverse direction. From the quantum
viewpoint on the other hand, no such restrictions are imposed, and the system is described by Eq. (V1.5b)
in Region 1 and by Eq. (VL.5c) in Regions 2. At the classical turning points, however, the validity condi-
tion Eq. (VL.6b) is certainly not fulfilled — we note that k,, for example, goes to zero when approaching
from the right — g0 we may not expect Eqs. (VI.5) to describe our system in this transition region.

It is for this reason that we are required to ohtain the so-called connection formulae of Kramers.**
Now in order to obtain these formulae one may proceed as follows:

Generally a linear potential function is assumed to be a reasonable approximation right around the
turning point. One then may obtain as solutions to Eqs. (VI.1) and (VL.2) functions which contain Bessel
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functions. Now we desire the asymptotic forms of these equations, initially at least. As an example, we
will find the value of the function as x approaches + <. This will give us — from the figure — the expected
value in Region 1 a reasonable distance removed from the turning point at x,. In like manner may the
value be found for the functions removed by a little into Regions 2 from the turning point. Finally we
determine the manner in which an asymptotic solution in, say, Region 2 will go into one in Region 1, and
so on. We find that a decreasing exponential in Region 2 (see Eq. (VL.5b)) will go into an expression of
the form

k2 cos(/kldx + i—) (V1.7a)

xt
where we may note that a linear combination of the two solutions Eq. (VI.5b) with proper choice of phase
will lead to this result. On the other hand an increasing exponential in Region 2 leads to:

kl"cos( / kdx — i) (VL7b)

where again the choice of phase in the combination resulting from Eq. (VL.5b) leads to the proper result.
In order to find the restrictions on the considered formulae, we require that the two solutions:

kot cos(/kldx - ’i)
4

ko cos(/kldx - ’i)
4

join smoothly at every point x within the interval x; to x;. This would mean then:

tan ‘(/k,dx - E)=: — tan(/k.dx - Zr-)
4 4

A solution of this equation yields:

x E43

/klrlx ::/kldt + (n + %)w

x x

/kldx == (n + %)w (VL.8)

which we recognize as the energies of a harmonic oscillator with n a positive integer.

or:



APPENDIX VIl
OSCILLATOR STRENGTHS

Our interest in oscillator strengths has been principally motivated by a desire to transform classical
expressions for spectral intensities into quantum mechanical ones. For this reason it would seem that a
good method of investigating oscillator strengths would be to determine classical and quantum intensity
or probability expressions and subsequently determine in what manner they are related and, as a conse-
quence, what the oscillator strength which relates them amounts to.

What we propose to do first then is to determine the total energy absorbed per second by a classical
oscillator. In order to do so let us first recall that an oscillator of frequency », has its instantaneous dis-
placement given by:

x = Acos 2mwt + o) (VIL1)
This means that:
E=T+ V = imi®+ § mox?=2nrmuA* (VIL2a)
From classical electromagnetic theory the mean energy given up by the oscillating dipole over unit
time is:
¢ 4ot 4ot
<CE> =Y ot gt = 20 o242 - T pp
bl L e (VIL3a)
or, over a time At long compared to the period of oscillation:
4w
AE = — M?At
Irc (VIL3b)
so that Eq. (VII.2a) becomes:
8x2my,?
E=-——M (VIL2b)
If we let:
_8rt &
Y= ?m—c’.vo (VIL4)
then Eq. (VII.3b) may be rewritten as:
él_) = 417E — F = Eoe“'“' (VII.S)

At
We may utilize a derivation similar to that of Sec. (6.13) of the text in order to show that, if a radiation

field of density T(»)dv in the frequency interval v to v + dv exists at our oscillator, the energy absorbed
by the oscillator from this field per unit of time is:

VR AU
EC) = 10) o T

From this equation one may immediately obtain:
+v

Epw = f E@)dv = T(»,) ’5—’ (VIL6)
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Now let us suppose that the energy absorbed is present in quanta of energy hv,. Then the number of
quanta absorbed per second by the oscillator is surely:

2
W = Twm) T (VILT)
hvom

W, we designate as the classical absorption probability, and it now remains for us to find the quantum
probability to which it relates. Firstly we recall the Planck expression for the radiation energy density.

re) = 81 (VILS)

& T ]

Following Einstein,**® let us suppose that: 4, is the probability of a spontaneous emission of radia-
tion by our oscillator (E, > E,); C,"T(v,n) is the probability of emission induced by the radiation field,
and B,™(v,,,) is the probability for induced absorption under the aegis of the radiation field of density T(v).
Further let us designate g; as the degeneracy of the state i. Then a Maxwell-Boltzmann distribution would
decree that gie™*/*T oscillators occupy the state i. Finally then, the assumption of equilibrium allows

us to write the relation among the transitions per second as:

A _hvm
gne *T [Am” + Co"T(vnm)] = gne *T B."T(vam) (VIL9)

This equation may be solved for T with the result:
T= fndlm (VIL10a)

gmBnmehv/kT . gnCm”
Now if Eq. (VII.8) — the Planck equation — is correct (and we suppose it to be) then g,,B,™ = g,C,;/
so that Eq. (V11.10a) becomes:

_ &nAw 1
T e [eﬂ—TTl ] (VIL10b)
Correctness of the Planck equation requires that the following relation exist between the coeflicients
of Eq. (VIL10b):
bndsl _ Brh7 (VIL1D)
gB."
In our further considerations we shall suppose the coefficient of induced emission C,," to be zero since

the induced emission is negligible compared to the spontaneous emission for moderate temperatures.
Classically, we may obtain the coefficient of spontaneous emission A,," from Eq. (VI1.3b) by equating
it to the number of photons emitted per second as given by this latter equation:

n _ 647%,,° . .

A = T (VILI2)
where now M., is a moment which we have assigned to the oscillator. Egs. (VII.11) and (VII.12) then
yield:

B =& e (VIL13a)

gn 3% '

so that:

WS = T(vum)B," (VIL.13b)

They are then the probabilities as given by Eqs. (VIL7) and (VIL.13b) which are related by the
“oscillator strength” of the transition from level m to n as:

an = fanﬂa (VII-I“')
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where:
2 n 3ps
fom = vamMan2 B2 8T _ A o € _ g hm (VILI5a)
i menm n 3h Vam: Bm 8re? we?
2 n
f"‘" = ym"lwm"ggjl;r_n == é"ﬂ cn = - "manngji é,“n (VIL.15b)
3h Vma® 87’ gn TP
for £, > E,.
The Thomas-Kuhn Summation Theorem, for each level m, of an atom,* is:
Vanan? - z VamMun® = 8%:;;12 (VIL.16a)
m
En :E'm En"<Em
n m 2
S AR A" 8_7"2f,Z (VIL16b)
"nm2 &m "nm2 mc®
En>Em En<En
2
B = 3 vamBu L ;l'iZ (VILI6c)
8n m
En>En En<Em
where Z is the number of electrons in the atom, is replaced by the expression:
Zfim=12 (VILI17)

Finally, we recall that the time for a classical oscillator amplitude to decay to 1’e of its original value
is generally taken as the mean life r. After the fashion in which we obtained the absorption relations
Eqs. (VII.14) and (VIL.15) we may find:

qu = fmn we (VIL.18a)
and

(VII.18b)

* Up to this point we have spoken only of an oscillator but let us remark that in the quantum derivation of the Einstein
coefficients no restriction to oscillators has been imposed. We note further that classically the discretely emitting atom is
treated as an oscillator.
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APPENDIX VIII
INVERSION DOUBLING

Let us begin our inversion doubling consideration by referring to the specific example of the XY,
molecule of Appendix II. A study of Fig. (IL.1) will be quite helpful.

From the figure in question one may note that a reflection of all particles through the center of mass
of the molecule — a sort of turning inside out of the molecule — results in a configuration which we would
be hard put to obtain by molecular rotation. For simplicity’s sake let us consider the one dimensional
approximation of this operation, to wit, let us simply consider the motion of the X atom vertically through
the Y plane from its equilibrium position above the plane to what must surely be another equilibrium
position below the plane, Before doing this, however, let us remark that, under the assumption of a quad-
ratic potential function for our X atom, we are to suppose a potential curve (in the absence of the mirror
potential) like this:

m—>»

X—»

The fact that the XY; does have a mirror potential, however, changes the look of the potential curve
to this:
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In Fig. (VIIL.2) the two minima are quite obviously located at 1 and 2 while the Y plane is to be found
atx = 0. The wings of the potential curve correspond to those found in Fig. (VIIL.2). Now let us devote
our qualitative attention to Fig. (VIIL2) for a moment.

In the figure the system has been assigned the arbitrary energy E. Classically, the X atom would be
restricted to those regions — namely, the two wells — for which E > V. This would be the end of the
problem, and we would have a difficult time justifying the effort already expended on it. Quantum mecha.
nists have long been intrigued by barriers though, so that, fortunately, we do have something to consider
after all.

If we set up the Schrodinger Equation for the region x; «~— x; or — %, «—— — x, “we may recall
that” (and here we probably really will recall that in contradistinction to those recalls limited to the author),
the eigenfunction satisfying this equation is oscillatory. Further the Schrodinger Equation for the classi-
cally forbidden regions will be satisfied by eigenfunctions consisting of exponential functions. The fact
that these latter eigenfunctions do exist within the classically forbidden region — x, +— x; means, through
¥y, that the X atom may penetrate within and through this barrier region. As a consequence of all this
the atom mays, in fact, be found in either of the two potential wells. If, say, ¢.(x) is the function asso-
ciated with the particle when in the right well and if ¥_(x) is the function associated with the particle in
the left well, then, since the atom may exist in either we are obliged to take two eigenfunctions, namely,
the linear combination:

Vi =y~ + ¢ (VIIL1a)
Ve = [¥- — vyl (VIIL1b)

for the X atom. Associated with these two eigenfunctions are two eigenvalues of the energy so that our
original eigenvalue E (of Fig. VII1.2) has been split into two. We may consider the preceding after a more
quantitative fashion.

Let us first consider the even function of x,¥,, corresponding to the energy E,. To begin with we may
take, as solutions to the wave equation in the classically forbidden region — x; < x < xy, the solutions
displayed as Eq. (VL.5c). A linear combination of them yields:

¢ = c(kfy cosh ([ kdx) — 2 < x < m (VIIL.2a)
1]
1 —_
when k= — Vo, |E — V|
o Vo | I
If the substitutions:
[hdx = [ kdx — [ kdx
0 0 z

are made in Eq. (VIIL.2a) the result is:
v=Cki)[dexp(— [kdx) + Alexp ([kdx)] 5 —m <x<m (VIIL.2b)

Now we will agree that some sort of oscillatory solution is required in the region x; < x < x3, and a

good one would appear to be:
Vi = RL.CkK)! cos [ [ kdx —0,] (VIIL3a)
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Substitution will indeed show that Eq. (VIII.3a) will join (VIIL.2b) if we suppose:

24 — 1
tan 8, = _ I1L3b
mor = o +1 v )
Vads + 1
R = e .
+ Y (VIIL3c)

In the region x > x; a solution of the form Eq. (VI.5¢) is appropriate and it should be quite
apparent that the negative exponential must be chosen in order that the eigenfunction may disappear as x
approaches infinity. Thus, for this region we choose:

¥i = BC(E)™ exp [~ [ kdx] (VIIL4)
Next, the connection formula Eq. (VI.7a) tellz us that Eq. (VIIL.4) becomes:
Y1 = 2BC(Hk)™} cos [ S kdx ~ —41] (VIIL5)

We are justified in requiring that the eigenfunctions given by Eqs. (VIIL.3a) and (VIIL5) correspond
at every point in the region x; < x < x, since they should simply be two ways of writing the same thing.
This in turn would allow us to equate ¥,y as obtained from the former and the latter equations, namely:

tan | f kdc — ¢,] = tan [ f kdx + —Z—] (VIIL6)

The two angles whose tangents are equated in Eq. (VII1.6) may surely only differ by an integral multiple

of x:
frae= (om0
or
%ﬁpdx = (n + — 4+ ——) h (VIILT)
4 x
where:

p="VuI|E - V|

Beginning with Eq. (VII1.2a) we have devoted our attention to the even eigenfunction. A study of the
odd eigenfunction begins with a consideration of the hyperbolic sine in the region — x; < x < x, and finally

yields:
4; pdx = (n + % - g:) h (VIIL8a)
T
where now:
also:
2
tan 9_ = %}% (VIIL8b)

After a manner of speaking the work to this point maj -ongidered preliminary to the main step,
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namely, the obtention of the magnitude of the level splitting due to the mirror potential. In order to
obtain the amount of this splitting let us subtract Eq. (VIIL7) from kq. (VIIL8a):

rs

— d. — Iy
2vm/ (VE_= 7 = VE, = ¥} dx = (,,,,_;_ Dy (VIIL9)
and begin by evaluating (_ — &,).
From Eqgs. (VIIL.3b) and (VIIL.8b):
tand_ — tandy _ 84

tan (J_ — ¢,) =
( + 1+ tano_tand, 84 — 1

Now 4 is a large quantity so that we may, to a good order of approximation, neglect the one in the
denominator. The magnitude of A also indicates, through the defining [igs. (V111.3b) and (VIIIL.8b), that

d_ will be quite near J, in value so that the difference, 9_ — ¢, will be small. As a consequence:
9. — 8, =tan (B — 9,) = /L (VIIL10)

We return to a consideration of Eq. (VIIL9), the left side of which may be rewritten as:

2"2”‘/“’D+E’ VD + E7} dx —szmeD{\/1+ \/1+E"}

where:
D=E,-V; FF=E_-E,; E'=E, - E,

The integrand in this latter equation may be expanded with the result:

2«/2'7nfw/17{[1+%%'+...] [1+ I;I»—%-...:I}dx

21

E+ E_ - E, h
= 2Vom / dx=2 — dx = —-
" \/E | Vem(E, — V)

I

It follows that, if we let A, denote the splitting of the inversion doubled level:
2
h dx -t
Ap = —— N (VIIL11)
27k, LS Vam(E, = V)

x:



APPENDIX X
RADIATION FROM AN ACCELERATED CHARGE

In order to consider this problem let us suppose that the usual physical situation prevails, namely,
the situation which is illustrated by Fig. (IX.1) and which may be described as follows:

P

/A

The electron is taken as being initially at 0 and in uniform motion of velocity v along the X-axis. At
this point an observer at P is aware of the electron’s presence at 0 by virtue of a static electric field which
surrounds and accompanies the electron in its uniform motion. At point 0 the electron begins to decelerate
and has decelerated to rest by the time it reaches point 0° where 00’ < 00" so that we shall later be able
to neglect the former distance compared to the latter. This acceleration of the electron causes the propaga-
tion of a disturbance in the previously static electronic field toward P with velocity ¢. 1t will take a time
for this disturbance to reach the observer at P who will, of course, be unaware of the existence of such a
disturbance until it reaches him. By virtue of this unawareness, he will be under the impression that the

electron has proceeded to point 0’ an impression which will be abetted by the static field of the electron,

. . . r . .
As a consequence the field will suddenly change, at a time -— after the deceleration, from the static field
c

corresponding to the electron at point 0" to a static field corresponding to the electron at 0’, or, since 00’
very small, at 0. This phenomenon forms the basis for the accelerated charge radiation, and let us con-
sider the situation a little more quantitatively.

&D-nds=41re

so that over the whole spbere on which, say, PA is an arc of a great circle:

We begin by recalling Gauss® Law:

D=c¢
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It is further apparent that D through a portion of sphere to the right of the plane represented by P4 is:

sphere area

D = e e —m
area to right of PA

=1e(l — cos p) (IX.1)

According to our preliminary reasoning then, the sequence of events will be as follows:

First, a field,
D =14%e(l — cos ¢) (IX.2a)

exists at P which corresponds to the field of the electron before acceleration. During the time L —the
¢

time required for the acceleration disturbance to reach P — the field at P changes to:
D =1e(l ~ cos¢’) (IX.2b)
Then, during the time & — the actual duration of the electronic acceleration — the field changes back
to that of Eq. (IX.2a). Then from Fqs. (IX.2) one may write:

8D_ D-D'_e(ewsy —cose) 4 80089 _ 4, gn, 00 (I1X.3)
ot ot ot ot
On the other hand:
B o =ing =Laing = — %in, (IX.4)
5t r c c ot c

8o that Eq. (IX.3) becomes:

8D 1 ae .
-~ = — = —sin® IX.5
ot 2 ¢ ¢ ( )
From Maxwell’s equation relating H and D one may obtain:
g}n. nds= > / D nds = (1X..62)
c c
or:
. . 4r 1 ae . v
H(Q2nrsin ) = — - Zgin? ¢ (IX.6b)
c 2 ¢
according to Eq. (1X.5), so that:
E=H=%.nv (IX.7)
rct

Now the energy in the field is given by:
2 2 2,2
wo BEHH o (IX.8)

B
8r 4rrict
Since intensity is the energy passing through unit surface in unit time, one next obtains:

a’e? .
I =_—""_sgin?p (IX.9)
4arric®

since the field is propagated with velocity c.
In order to find the total power radiated, we must integrate the intensity over a containing sphere:

2 a%?’
P=§I-2‘ i dp = = —. I1X.10
nrsin g rdp = o — ( )

Eq. (IX.10, is the expression which we utilized in Sec. (6.13).
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